BibTex RIS Cite

EXISTENCE OF SYMMETRIC POSITIVE SOLUTIONS FOR LIDSTONE TYPE INTEGRAL BOUNDARY VALUE PROBLEMS

Year 2018, Volume: 8 Issue: 1.1, 295 - 305, 01.09.2018

Abstract

This paper establishes the existence of even number of symmetric positive solutions for the even order differential equation −1 n u 2n t = f t, u t , t ∈ 0, 1 , satisfying Lidstone type integral boundary conditions of the form u 2i 0 = u 2i 1 = Z 1 0 ai+1 x u 2i x dx, for 0 ≤ i ≤ n − 1, where n ≥ 1, by applying Avery–Henderson fixed point theorem.

References

  • Agarwal, R. P., O’Regan, D. , Wong, P. J. Y., 1999, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • Avery, R. I., Henderson, J., (2001), Two positive fixed points of nonlinear operators on ordered Banach spaces, Comm. Appl. Nonlinear Anal., 8, no. 1, 27–36.
  • Bai, Z, Ge, W., (2003), Solutions of 2nth Lidstone boundary value problems and dependence on higher order derivatives, J. Math. Anal. Appl., 279 , 442–450.
  • Belarbi, A., Benchohra, M., (2005), Existence results for nonlinear boundary value problems with integral boundary conditions, Electron. J. Differ. Equ., No. 6, 1-10.
  • A. K. Boucherif, (2007), Positive solutions of second order differential equations with integral boundary conditions, Discrete Cont. Dyn. Syst., 155–159.
  • Davis, J. M., Henderson, J., (1999), Triple positive symmetric solutions for a Lidstone boundary value problem,Differ. Equ. Dyn. Syst. 7, 321–330.
  • Davis, J. M., Henderson, J, Wong, P. J. Y., (2000) General Lidstone problems: Multiplicity and symmetry of solutions, J. Math. Anal. Appl. 251, 527–548.
  • Ehme, J., Henderson, J., (2000), Existence and local uniqueness for nonlinear Lidstone boundary value problems, J. Inequalities Pure Appl. Math., No. 1, Article 8, 1–9.
  • Galvis, J., Rojas, E. M., Sinitsyn, A. V., (2015), Existence of positive solutions of a nonlinear second order boundary value problem with integral boundary conditions, Electron. J. Differ. Equ., No. 236, 1–7.
  • Ji, Y., Guo, Y., Yao, Y., (2015), Positive solutions for higher order differential equations with integral boundary conditions, Boundary Value Problems, No. 214, 1–11.
  • Kang, P., Wei, Z, Xu, J., (2008), Positive solutions to fourth order singular boundary value problems with integral boundary conditions in abstract spaces, Appl. Math. Comput., No. 1, 245–256.
  • Liu, L, Hao, X, Wu, Y., (2013), Positive solutions for singular second order differential equations with integral boundary conditions, Math. Comp. Modelling,57, No. 3–4, 836–847.
  • Ma, H., (2008), Symmetric positive solutions for nonlocal boundary value problems of fourth order, Nonlinear Anal., 68, No. 3, 645–651.
  • Sun, Y. P., (2011), Three Symmetric positive solutions for second order nonlocal boundary value problems, Acta Math. Appl. Sin. Engl. Ser., 27, No. 2, 233–242.
  • Wang, Q., Guo, Y., Ji, Y., (2013), Positive solutions for fourth order nonlinear differential equation with integral boundary conditions, Discrete Dyn. Nature Soc., article ID: 684962, 1–10.
  • Wong, P. J. Y., Agarawal, R. P., (1999), Eigenvalues of Lidstone boundary value problems, Appl. Math. Comput., 104, 15–31.
  • Xu, F., (2011) Three symmetric positive solutions of fourth order nonlocal boundary value problems, Electron. J. Qual. Theory Differ. Equ., No. 96, 1–11.
  • Xu, F., Liu, J., (2010), Symmetric positive solutions for nonlinear singular fourth order eigenvalue problems with nonlocal boundary condition, Discrete Dyn. Nature Soc., article ID: 187827, 1–16.
  • Zhang, B., Liu, X., (2003), Existence of multiple symmetric positive solutions of higher order Lidstone problems, J. Math. Anal. Appl., 284, 672–689.
  • Zhang, L., Xuan, Z., (2016), Multiple Positive solutions for a second order boundary value problem with integral boundary conditions, Boundary Value Problems, No. 60, 1–8.
  • Zhang, X., Feng, M., Ge, W., (2008), Existence results for nonlinear boundary value problems with integral boundary conditions in Banach spaces, Nonlinear Anal., 69,No. 10, 3310–3321.
  • Zhang, X., Ge, W., (2009), Positive solutions for a class of boundary value problems with integral boundary conditions, Comp. Math. Appl., 58, no. 2, 203–215.
Year 2018, Volume: 8 Issue: 1.1, 295 - 305, 01.09.2018

Abstract

References

  • Agarwal, R. P., O’Regan, D. , Wong, P. J. Y., 1999, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • Avery, R. I., Henderson, J., (2001), Two positive fixed points of nonlinear operators on ordered Banach spaces, Comm. Appl. Nonlinear Anal., 8, no. 1, 27–36.
  • Bai, Z, Ge, W., (2003), Solutions of 2nth Lidstone boundary value problems and dependence on higher order derivatives, J. Math. Anal. Appl., 279 , 442–450.
  • Belarbi, A., Benchohra, M., (2005), Existence results for nonlinear boundary value problems with integral boundary conditions, Electron. J. Differ. Equ., No. 6, 1-10.
  • A. K. Boucherif, (2007), Positive solutions of second order differential equations with integral boundary conditions, Discrete Cont. Dyn. Syst., 155–159.
  • Davis, J. M., Henderson, J., (1999), Triple positive symmetric solutions for a Lidstone boundary value problem,Differ. Equ. Dyn. Syst. 7, 321–330.
  • Davis, J. M., Henderson, J, Wong, P. J. Y., (2000) General Lidstone problems: Multiplicity and symmetry of solutions, J. Math. Anal. Appl. 251, 527–548.
  • Ehme, J., Henderson, J., (2000), Existence and local uniqueness for nonlinear Lidstone boundary value problems, J. Inequalities Pure Appl. Math., No. 1, Article 8, 1–9.
  • Galvis, J., Rojas, E. M., Sinitsyn, A. V., (2015), Existence of positive solutions of a nonlinear second order boundary value problem with integral boundary conditions, Electron. J. Differ. Equ., No. 236, 1–7.
  • Ji, Y., Guo, Y., Yao, Y., (2015), Positive solutions for higher order differential equations with integral boundary conditions, Boundary Value Problems, No. 214, 1–11.
  • Kang, P., Wei, Z, Xu, J., (2008), Positive solutions to fourth order singular boundary value problems with integral boundary conditions in abstract spaces, Appl. Math. Comput., No. 1, 245–256.
  • Liu, L, Hao, X, Wu, Y., (2013), Positive solutions for singular second order differential equations with integral boundary conditions, Math. Comp. Modelling,57, No. 3–4, 836–847.
  • Ma, H., (2008), Symmetric positive solutions for nonlocal boundary value problems of fourth order, Nonlinear Anal., 68, No. 3, 645–651.
  • Sun, Y. P., (2011), Three Symmetric positive solutions for second order nonlocal boundary value problems, Acta Math. Appl. Sin. Engl. Ser., 27, No. 2, 233–242.
  • Wang, Q., Guo, Y., Ji, Y., (2013), Positive solutions for fourth order nonlinear differential equation with integral boundary conditions, Discrete Dyn. Nature Soc., article ID: 684962, 1–10.
  • Wong, P. J. Y., Agarawal, R. P., (1999), Eigenvalues of Lidstone boundary value problems, Appl. Math. Comput., 104, 15–31.
  • Xu, F., (2011) Three symmetric positive solutions of fourth order nonlocal boundary value problems, Electron. J. Qual. Theory Differ. Equ., No. 96, 1–11.
  • Xu, F., Liu, J., (2010), Symmetric positive solutions for nonlinear singular fourth order eigenvalue problems with nonlocal boundary condition, Discrete Dyn. Nature Soc., article ID: 187827, 1–16.
  • Zhang, B., Liu, X., (2003), Existence of multiple symmetric positive solutions of higher order Lidstone problems, J. Math. Anal. Appl., 284, 672–689.
  • Zhang, L., Xuan, Z., (2016), Multiple Positive solutions for a second order boundary value problem with integral boundary conditions, Boundary Value Problems, No. 60, 1–8.
  • Zhang, X., Feng, M., Ge, W., (2008), Existence results for nonlinear boundary value problems with integral boundary conditions in Banach spaces, Nonlinear Anal., 69,No. 10, 3310–3321.
  • Zhang, X., Ge, W., (2009), Positive solutions for a class of boundary value problems with integral boundary conditions, Comp. Math. Appl., 58, no. 2, 203–215.
There are 22 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

N. Sreedhar This is me

K. R. Prasad This is me

S. Balakrishna This is me

Publication Date September 1, 2018
Published in Issue Year 2018 Volume: 8 Issue: 1.1

Cite