BibTex RIS Cite

APPROXIMATION TO DISTRIBUTED ACTIVATION ENERGY MODEL FOR RESIDUAL LOGGING OF CEDRUS DEODORA USING WEIBULL DISTRIBUTION

Year 2018, Volume: 8 Issue: 1, 8 - 19, 01.06.2018

Abstract

The paper focuses to explain the in uence of some relevant parameters of biomass pyrolysis on the numerical solution of isothermal nth order distributed activation energy model DAEM . The upper limit of \dE", the frequency factors, the reaction order, the shape and location parameters of the Weibull distribution are studied. These parameters have been used for estimating the kinetic parameters of the isothermal Weibull DAEM from thermo analytical data of loose biomass. Moreover, asymptotic approach has been adopted to nd the solution of DAEM.

References

  • Di Blasi C. (2008). Modeling chemical and physical processes of wood and biomass pyrolysis, Progress in Energy and Combustion Science, 34 (1): 47-90.
  • White J.E., Catallo W.J., Legendre, B.L. (2011) Biomass pyrolysis kinetics: A comparative critical review with relevant ... Journal of Analytical and Applied Pyrolysis, 91 (1): 133.
  • Khawam A. and Flanagan D.R. (2006). Solid-state kinetic models: Basics and mathematical funda- mentals, Journal of Physical Chemistry B, 110 (35): 17315-17328.
  • V´arhegyi, G. (2007) Aim and methods in non-isothermal reaction kinetics. Journal of Analytical and Applied Pyrolysis, 79(12), 278288. 38.
  • Paik P., Kar K. K. (2009). Thermal degradation kinetics and estimation of lifetime of polythene particles: effects of particle size, Materials Chemistry and Physics, 113 (2-3): 953-961.
  • Miura, K. (1995). A New and Simple Method to Estimate f (E) and k0(E) in the Distributed Activa- tion Energy Model from Three Sets of Experimental Data, Energy and Fuel, 9(2): 302-307
  • Vyazovkin S, Wight C.A. (1999). Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 340-341: 53-68.
  • Aboyade, A. O., Hugo, T. J., Carrier, M., Meyer, E. L., Stahl, R., Knoetze, J. H., G¨orgens, J. F. (2011). Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere, Thermochimica Acta 517 (1):81-89.
  • Nowicki, L., Stolarek, P., Olewski, T., Bedyk, T., Ledakowicz, S. (2008), Mechanism and kinetics of sewage sludge pyrolysis by thermogravimetry and mass spectrometry analysis, Chemical and Process Engineering, 29(1):813-825
  • Barneto, A. G., Carmona, J. A., Alfonso, J. E. M., Blanco,J. D.(2009). Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost, Journal of
  • Analytical and Applied Pyrolysis 86 (1): 108-114. Mangut, V., Sabio, E., Ga˜n´an, J., Gonz´alez, J. F., Ramiro, A., Gonz´alez, C. M., Rom´an, S., Al-Kassir, A. (2006). Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry, Fuel Processing Technology, 87 (2): 109-115
  • G¨unes M., Gnes S. (2002) A direct search method for determination of DAEM kinetic parameters from nonisothermal TGA data (note). Appl. Math. Computation, 130(2): 619628
  • Miura, K., Maki, T. A. (1998). Simple Method for Estimating f (E) and k0(E) in the Distributed
  • Activation Energy Model, Energy & Fuels, 12(5): 864-869. Sonobe, T., Worasuwannarak, N. (2008). Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel, 87:414-421
  • Li, Z., Liu, C., Chen, Z., Qian, J., Zhao, W., Zhu, Q. (2009). Analysis of coals and biomass pyrolysis using the distributed activation energy model. Bioresource Technol. 100: 948-952.
  • Yan JH, Zhu HM, Jiang XG, Chi Y, Cen KF. (2009). Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. J Hazard Material, 162: 651
  • Quan, C., Li, A., Gao, N. (2009). Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes, Waste Management 29(8): 23532360
  • Skrdla P.J. and Roberson R.T. (2005). Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies: applications to a polymorphic transfor- mation under crystallization slurry conditions and to the thermal decomposition of AgMnO4crystals. J. Phys. Chem. B, 109: 10611-10619.
  • Howard J.B., in Chemistry of Coal Utilization, (M.A.Elliott, Ed) Wiley & Sons (1981) Ch. 12.
  • Suuberg E.M. (1983). Approximate solution technique for nonisothermal, Gaussian distributed acti- vation energy models, Combust. Flame, 50:243-245
  • Pitt G.J. (1962). The kinetics of the evolution of volatile products from coal. Fuel 1:267 (1962).
  • Vand V. (1943). A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum, Proc. Phys. Soc. (London). (1943). A55:222
  • Dhaundiyal A. and Singh S.B. (2016). Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution,Proceedings of the Latvian Academy of Sciences. Section B. Natural,Exact, and Applied Sciences, 70(2): 6470
There are 23 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

A. Dhaundiyal This is me

S. B. Singh This is me

Publication Date June 1, 2018
Published in Issue Year 2018 Volume: 8 Issue: 1

Cite