BibTex RIS Cite

SINGLE-VALUED NEUTROSOPHIC HYPERGRAPHS

Year 2018, Volume: 8 Issue: 1, 122 - 135, 01.06.2018

Abstract

We introduce certain concepts, including single-valued neutrosophic hyper-graph, line graph of single-valued neutrosophic hypergraph, dual single-valued neutro- sophic hypergraph and transversal single-valued neutrosophic hypergraph.

References

  • Akram,M. and Dudek,W.A., (2013), Intuitionistic fuzzy hypergraphs with applications, Information Sciences, 218, pp.182-193.
  • Akram,M. and Alshehri,N.O., (2015), Tempered interval-valued fuzzy hypergraphs, University po- litehnica of bucharest scientific bulletin-series a-applied mathematics and physics, 77, pp.39-48.
  • Atanassov,K.T., (1983), Intuitionistic fuzzy sets, VII ITKR’s Session, Deposed in Central for Science
  • Technical Library of Bulgarian Academy of Sciences, 1697/84, Sofia, Bulgaria.
  • Broumi,S., Talea,M., Bakali,A., and Smarandache,F., (2016), Single-valued neutrosophic graphs, Jour- nal of New theory, 10, pp.86-101.
  • Chen,S.M., (1997), Interval-valued fuzzy hypergraph and fuzzy partition, IEEE Transactions on Sys- tems, Man, and Cybernetics, Part B (Cybernetics), 27(4), pp.725-733.
  • Dhavaseelan,R., Vikramaprasad,R., and Krishnaraj,V., (2015), Certain types of neutrosophic graphs, Int Jr. Math. Sci. App., 5, pp.333-339.
  • Kauffmann,A., (1973), Introduction a la theorie des sous-ensembles flous, 1, Masson.
  • Lee-kwang,H. and Lee,L.M., (1995), Fuzzy hypergraph and fuzzy partition, IEEE Trans. Syst. Man Cybernet., 25, pp.196-201.
  • Maji,P.K., (2012), A neutrosophic soft set approach to a decision making problem. Annals of Fuzzy
  • Mathematics and Informatics, 3, pp.313-319. Majumdar,P. and Samanta,S.K., (2014), On similarity and entropy of neutrosophic sets, Journal of
  • Intelligent and Fuzzy Systems, 26, pp.1245-1252.
  • Mordeson,J.N. and Nair,P.S., (2001), Fuzzy graphs and fuzzy hypergraphs, Physica Verlag, Heidelberg.
  • Rosenfeld,A., (1975), Fuzzy graphs, fuzzy Sets and their Applications to Cognitive and Decision
  • Processes (Proceeding of U.S.-Japan Sem., University of California, Berkeley, Calif, 1974) (L. A. Zadeh, K. S. Fu, and M. Shimura, eds.), Academic Press, New York, pp.77-95.
  • Smarandache,F., (1998), Neutrosophy. Neutrosophic Probability, Set, and Logic, Amer. Res. Press, Rehoboth, USA, 105.
  • Smarandache,F., (2005), Neutrosophic set, a generalization of the Intuitionistic Fuzzy Sets, Interna- tional Journal of Pure and Applied Mathematics, 24, pp.287-297.
  • Wang,H., Smarandache,F., Zhang,Y., and Sunderraman,R., (2010), Single-valued neutrosophic sets
  • Multispace and Multistructure, 4, pp.410-413. Ye,J. (2014), Similarity measures between interval neutrosophic sets and their applications in multi- criteria decision-making. Journal of Intelligent and Fuzzy Systems, 26, pp.165-172.
  • Zadeh,L.A., (1965), Fuzzy sets, Information and Control, 8, pp.338-353.
Year 2018, Volume: 8 Issue: 1, 122 - 135, 01.06.2018

Abstract

References

  • Akram,M. and Dudek,W.A., (2013), Intuitionistic fuzzy hypergraphs with applications, Information Sciences, 218, pp.182-193.
  • Akram,M. and Alshehri,N.O., (2015), Tempered interval-valued fuzzy hypergraphs, University po- litehnica of bucharest scientific bulletin-series a-applied mathematics and physics, 77, pp.39-48.
  • Atanassov,K.T., (1983), Intuitionistic fuzzy sets, VII ITKR’s Session, Deposed in Central for Science
  • Technical Library of Bulgarian Academy of Sciences, 1697/84, Sofia, Bulgaria.
  • Broumi,S., Talea,M., Bakali,A., and Smarandache,F., (2016), Single-valued neutrosophic graphs, Jour- nal of New theory, 10, pp.86-101.
  • Chen,S.M., (1997), Interval-valued fuzzy hypergraph and fuzzy partition, IEEE Transactions on Sys- tems, Man, and Cybernetics, Part B (Cybernetics), 27(4), pp.725-733.
  • Dhavaseelan,R., Vikramaprasad,R., and Krishnaraj,V., (2015), Certain types of neutrosophic graphs, Int Jr. Math. Sci. App., 5, pp.333-339.
  • Kauffmann,A., (1973), Introduction a la theorie des sous-ensembles flous, 1, Masson.
  • Lee-kwang,H. and Lee,L.M., (1995), Fuzzy hypergraph and fuzzy partition, IEEE Trans. Syst. Man Cybernet., 25, pp.196-201.
  • Maji,P.K., (2012), A neutrosophic soft set approach to a decision making problem. Annals of Fuzzy
  • Mathematics and Informatics, 3, pp.313-319. Majumdar,P. and Samanta,S.K., (2014), On similarity and entropy of neutrosophic sets, Journal of
  • Intelligent and Fuzzy Systems, 26, pp.1245-1252.
  • Mordeson,J.N. and Nair,P.S., (2001), Fuzzy graphs and fuzzy hypergraphs, Physica Verlag, Heidelberg.
  • Rosenfeld,A., (1975), Fuzzy graphs, fuzzy Sets and their Applications to Cognitive and Decision
  • Processes (Proceeding of U.S.-Japan Sem., University of California, Berkeley, Calif, 1974) (L. A. Zadeh, K. S. Fu, and M. Shimura, eds.), Academic Press, New York, pp.77-95.
  • Smarandache,F., (1998), Neutrosophy. Neutrosophic Probability, Set, and Logic, Amer. Res. Press, Rehoboth, USA, 105.
  • Smarandache,F., (2005), Neutrosophic set, a generalization of the Intuitionistic Fuzzy Sets, Interna- tional Journal of Pure and Applied Mathematics, 24, pp.287-297.
  • Wang,H., Smarandache,F., Zhang,Y., and Sunderraman,R., (2010), Single-valued neutrosophic sets
  • Multispace and Multistructure, 4, pp.410-413. Ye,J. (2014), Similarity measures between interval neutrosophic sets and their applications in multi- criteria decision-making. Journal of Intelligent and Fuzzy Systems, 26, pp.165-172.
  • Zadeh,L.A., (1965), Fuzzy sets, Information and Control, 8, pp.338-353.
There are 20 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

M. Akram This is me

S. Shahzadi This is me

A.b. Saeid This is me

Publication Date June 1, 2018
Published in Issue Year 2018 Volume: 8 Issue: 1

Cite