BibTex RIS Cite
Year 2017, Volume: 7 Issue: 2, 236 - 247, 01.12.2017

Abstract

References

  • Griffiths,D.J., (2004), An Introduction to Quantum Mechanics, Prentice Hall, USA.
  • Landau,L.D. and Lifschitz,E.M., (1958), Quantum mechanics, Pergamon Press, UK.
  • Fowler,R.H. and Nordheim,L., (1928), Electron emission in intense electric fields, Proc. R. Soc. Lond. A, Vol.119, pp.173.
  • Bayındır,C., (2009), Implementation of a Computational Model for Random Directional Seas and Underwater Acoustics, MS Thesis, University of Delaware.
  • Bayındır,C., (2015), Compressive Split-Step Fourier Method. TWMS: Journal of Applied and Engi- neering Mathematics, Vol.5, pp.298.
  • Bayındır,C., (2016), Early detection of rogue waves by the wavelet transforms, Physics Letters A, Vol.380, pp.156.
  • Bayındır,C., (2015), Hesaplamalı akı¸skanlar mekani˘gi ¸calı¸smaları i¸cin sıkı¸stırılabilir Fourier tayfı y¨ontemi, 19. Mekanik Kongresi, Trabzon (In Turkish).
  • Bayındır,C., (2015), S¨on¨uml¨u de˘gi¸stirilmi¸s Korteweg de-Vries (KdV) denkleminin analitik ve hesapla- malı ¸c¨oz¨um kar¸sıla¸stırması, 19. Mekanik Kongresi, Trabzon, Turkey. (In Turkish)
  • Bayındır,C., (2015), Okyanus dalgalarının sıkı¸stırılabilir Fourier tayfı y¨ontemiyle hızlı modellenmesi
  • Mekanik Kongresi, Trabzon (In Turkish). Demiray,H. and Bayındır,C., (2015), A note on the cylindrical solitary waves in an electron-acoustic plasma with vortex electron distribution, Physics of Plasmas, 22, 092105; doi: 10.1063/1.4929863.
  • Karjadi,E.A., Badiey,M., and Kirby,J.T., (2010), Impact of surface gravity waves on high-frequency acoustic propagation in shallow water, The Journal of the Acoustical Society of America, Vol.127, pp.1787-1787.
  • Karjadi,E.A., Badiey,M., Kirby,J.T., and Bayındır,C., (2012), The effects of surface gravity waves on high-frequency acoustic propagation in shallow water, IEEE Journal of Oceanic Engineering, Vol.37, pp.112-121.
  • Bayındır,C., (2016), Early Detection of Rogue Waves Using Compressive Sensing. arXiv Preprint, arXiv:1602.00816.
  • Bayındır,C., (2016), Analytical and numerical aspects of the dissipative nonlinear Schr¨odinger equa- tion, TWMS: Journal of Applied and Engineering Mathematics, Vol.6, No.1, pp.135-142.
  • Bayındır,C., (2016), Compressive spectral method for the simulation of the nonlinear gravity waves
  • Scientific Reports, 6, 22100; doi: 10.1038/srep22100.
  • Bayındır,C., (2016), Rogue waves of the Kundu-Eckhaus equation in a chaotic wavefield. Physical Review E, 93, 032201.
  • Bayındır,C., (2016), Rogue wave spectra of the Kundu-Eckhaus equation. Physical Review E, 93
  • Bayındır,C., (2016), An extended Kundu-Eckhaus equation for modeling dynamics of rogue waves in a chaotic wave-current field. arXiv Preprint, arXiv:1602.05339.
  • Canuto,C., Hussaini,M.Y., Quarteroni,A., and Zang,T.A., (2006), Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, DE.
  • Trefethen,L.N., (2000), Spectral Methods in MATLAB, SIAM, Philadelphia.
  • Akhmediev,N., Ankiewicz,A., and Soto-Crespo,J.M., (2009), Rogue waves and rational solutions of the nonlinear Schrdinger equation, Physical Review E, 80, 026601.
  • Akhmediev,N., Soto-Crespo,J.M., Ankiewicz,A., and Devine,N., (2011), Early detection of rogue waves in a chaotic wave field, Physics Letters A, Vol.375, pp.2999.
  • Akhmediev,N., Soto-Crespo,J.M., and Ankiewicz,A., (2009), Extreme waves that appear from nowhere: On the nature of rogue waves. Physics Letters A, Vol.373, pp.2137.
  • Soto-Crespo,J.M., Devine,N., Hoffmann,N.P., and Akhmediev,N., (2014) Rogue waves of the Sasa
  • Satsuma equation in a chaotic wave field. Physical Review E, 90, 032902.
  • Peregrine,H. and Smith,R., (1979), Nonlinear effects upon waves near caustics. Philosophical Trans- actions of the Royal Society of London A, Vol.292 , pp.341.
  • Kedziora,D., Ankiewicz,A., and Akhmediev,N., (2013) The phase patterns of higher-order rogue waves.Journal of Optics, 15, 6, , 064011.
  • Smith,R., (1976), Giant Waves, Journal of Fluid Mechanics, Vol.77, pp.417.
  • Bayındır,C., (2015), Shapes and statistics of the rogue waves generated by chaotic ocean current. arXiv Preprint, arXiv:1512.03584.
  • Chabchoub,A. and Fink,M., (2014) ,Time-Reversal Generation of Rogue Waves. Physical Review Letters, Vol.112, 124101.

ROGUE WAVEFUNCTIONS DUE TO NOISY QUANTUM TUNNELING POTENTIALS

Year 2017, Volume: 7 Issue: 2, 236 - 247, 01.12.2017

Abstract

In this paper, we study the e ects of white-noised potentials on nonlinear quantum tunneling. We use a split-step scheme to numerically solve the nonlinear Schrodinger equation NLSE with a tunneling potential. We consider three di erent types of potentials, namely; the single rectangular barrier, double rectangular barrier, and triangular barrier. For all these three cases, we show that white-noise given to potentials do not trigger modulation instability for tunneling of the sech type soliton solutions of the NLSE. However, white-noised potentials trigger modulation instability for tunneling of the sinusoidal wavefunctions; thus, such a wave eld turns into a chaotic one with many apparent peaks. We argue that peaks of such a eld may be in the form of rational rogue wave solutions of the NLSE. Our results can be used to examine the e ects of noise on quantum tunneling. Since a rogue wavefunction means a higher probability of the tunneling particle to be at a given x,t coordinate, our results may also be used for developing the quantum science and technology with many possible applications including but are not limited to increasing the resolution and eciency of scanning tunneling microscopes, enhancing proton tunneling for DNA mutation and enhancing superconducting properties of junctions.

References

  • Griffiths,D.J., (2004), An Introduction to Quantum Mechanics, Prentice Hall, USA.
  • Landau,L.D. and Lifschitz,E.M., (1958), Quantum mechanics, Pergamon Press, UK.
  • Fowler,R.H. and Nordheim,L., (1928), Electron emission in intense electric fields, Proc. R. Soc. Lond. A, Vol.119, pp.173.
  • Bayındır,C., (2009), Implementation of a Computational Model for Random Directional Seas and Underwater Acoustics, MS Thesis, University of Delaware.
  • Bayındır,C., (2015), Compressive Split-Step Fourier Method. TWMS: Journal of Applied and Engi- neering Mathematics, Vol.5, pp.298.
  • Bayındır,C., (2016), Early detection of rogue waves by the wavelet transforms, Physics Letters A, Vol.380, pp.156.
  • Bayındır,C., (2015), Hesaplamalı akı¸skanlar mekani˘gi ¸calı¸smaları i¸cin sıkı¸stırılabilir Fourier tayfı y¨ontemi, 19. Mekanik Kongresi, Trabzon (In Turkish).
  • Bayındır,C., (2015), S¨on¨uml¨u de˘gi¸stirilmi¸s Korteweg de-Vries (KdV) denkleminin analitik ve hesapla- malı ¸c¨oz¨um kar¸sıla¸stırması, 19. Mekanik Kongresi, Trabzon, Turkey. (In Turkish)
  • Bayındır,C., (2015), Okyanus dalgalarının sıkı¸stırılabilir Fourier tayfı y¨ontemiyle hızlı modellenmesi
  • Mekanik Kongresi, Trabzon (In Turkish). Demiray,H. and Bayındır,C., (2015), A note on the cylindrical solitary waves in an electron-acoustic plasma with vortex electron distribution, Physics of Plasmas, 22, 092105; doi: 10.1063/1.4929863.
  • Karjadi,E.A., Badiey,M., and Kirby,J.T., (2010), Impact of surface gravity waves on high-frequency acoustic propagation in shallow water, The Journal of the Acoustical Society of America, Vol.127, pp.1787-1787.
  • Karjadi,E.A., Badiey,M., Kirby,J.T., and Bayındır,C., (2012), The effects of surface gravity waves on high-frequency acoustic propagation in shallow water, IEEE Journal of Oceanic Engineering, Vol.37, pp.112-121.
  • Bayındır,C., (2016), Early Detection of Rogue Waves Using Compressive Sensing. arXiv Preprint, arXiv:1602.00816.
  • Bayındır,C., (2016), Analytical and numerical aspects of the dissipative nonlinear Schr¨odinger equa- tion, TWMS: Journal of Applied and Engineering Mathematics, Vol.6, No.1, pp.135-142.
  • Bayındır,C., (2016), Compressive spectral method for the simulation of the nonlinear gravity waves
  • Scientific Reports, 6, 22100; doi: 10.1038/srep22100.
  • Bayındır,C., (2016), Rogue waves of the Kundu-Eckhaus equation in a chaotic wavefield. Physical Review E, 93, 032201.
  • Bayındır,C., (2016), Rogue wave spectra of the Kundu-Eckhaus equation. Physical Review E, 93
  • Bayındır,C., (2016), An extended Kundu-Eckhaus equation for modeling dynamics of rogue waves in a chaotic wave-current field. arXiv Preprint, arXiv:1602.05339.
  • Canuto,C., Hussaini,M.Y., Quarteroni,A., and Zang,T.A., (2006), Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, DE.
  • Trefethen,L.N., (2000), Spectral Methods in MATLAB, SIAM, Philadelphia.
  • Akhmediev,N., Ankiewicz,A., and Soto-Crespo,J.M., (2009), Rogue waves and rational solutions of the nonlinear Schrdinger equation, Physical Review E, 80, 026601.
  • Akhmediev,N., Soto-Crespo,J.M., Ankiewicz,A., and Devine,N., (2011), Early detection of rogue waves in a chaotic wave field, Physics Letters A, Vol.375, pp.2999.
  • Akhmediev,N., Soto-Crespo,J.M., and Ankiewicz,A., (2009), Extreme waves that appear from nowhere: On the nature of rogue waves. Physics Letters A, Vol.373, pp.2137.
  • Soto-Crespo,J.M., Devine,N., Hoffmann,N.P., and Akhmediev,N., (2014) Rogue waves of the Sasa
  • Satsuma equation in a chaotic wave field. Physical Review E, 90, 032902.
  • Peregrine,H. and Smith,R., (1979), Nonlinear effects upon waves near caustics. Philosophical Trans- actions of the Royal Society of London A, Vol.292 , pp.341.
  • Kedziora,D., Ankiewicz,A., and Akhmediev,N., (2013) The phase patterns of higher-order rogue waves.Journal of Optics, 15, 6, , 064011.
  • Smith,R., (1976), Giant Waves, Journal of Fluid Mechanics, Vol.77, pp.417.
  • Bayındır,C., (2015), Shapes and statistics of the rogue waves generated by chaotic ocean current. arXiv Preprint, arXiv:1512.03584.
  • Chabchoub,A. and Fink,M., (2014) ,Time-Reversal Generation of Rogue Waves. Physical Review Letters, Vol.112, 124101.
There are 31 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Cihan Bayındır This is me

Publication Date December 1, 2017
Published in Issue Year 2017 Volume: 7 Issue: 2

Cite