BibTex RIS Cite
Year 2017, Volume: 7 Issue: 1, 110 - 130, 01.06.2017

Abstract

References

  • Alotaibi,A. and Alsulami,S.M., (2011), Coupled coincidence points for monotone operators in partially ordered metric spaces, Fixed Point Theory Appl. 2011, 2011: 44.
  • Abbas,M., Khan,M.A., and Radenovi´c,S., (2010), Common coupled fixed point theorem in cone metric space for w-compatible mappings, Appl. Math. Comput., 217, pp.195-202.
  • Agarwal,R.P., Sintunavarat,W., and Kumam,P., (2013), Coupled coincidence point and common cou- pled fixed point theorems lacking the mixed monotone property, Fixed Point Theory Appl. 2013, :22.
  • Banach,S., (1922), Surles operations dans les ensembles et leur application aux equation sitegrales, Fund. Math., 3, pp.133-181.
  • Boyd,D.W. and Wong,J.S.W., (1969), On nonlinear contractions, Proc. Amer. Math. Soc., 20, pp.458
  • Bhaskar,T.G. and Lakshmikantham,V., (2006), Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65(7), pp.1379-1393.
  • Berinde,V., (2011), Generalized coupled fixed point theorems for mixed monotone mappings partially ordered metric spaces, Nonlinear Anal., 74, pp.7347-7355.
  • ´Ciri´c,L.B., (1974), A generalization of Banachs contraction principle, Proc. Amer. Math. Soc., 45, pp.267-273.
  • Choudhury,B.S. and Kundu,A., (2010), A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal., 73, pp.2524-2531.
  • Choudhury,B.S., Metiya,N., and Kundu,A., (2011), Coupled coincidence point theorems in ordered metric spaces, Ann. Univ. Ferrara, 57, pp.1-16.
  • Chandok,S. and Tas,K., (2014), An original coupled coincidence point result for a pair of mappings without MMP, J. Inequal. Appl., 2014, 2014:61.
  • Dutta,P. and Choudhury,B.S., (2008), A generalization of contractions in partially ordered metric spaces, Appl. Anal., 87, pp.109-116.
  • Dori´c,D., Kadelburg,Z., and Radenovi´c,S., (2012), Coupled fixed point results for mappings without mixed monotone property, Appl. Math. Lett., DOI 10.1016/j.aml.2012.02.022.
  • Guo,D. and Lakshmikantham,V., (1987), Coupled fixed points of nonlinear operators with applica- tions, Nonlinear Anal., 11, pp.623-632.
  • Haghi, R.H., Rezapour,Sh., and Shahzad,N., (2011), Some fixed point generalizations are not real generalizations, Nonlinear Anal., 74, pp.1799-1803.
  • Hussain,N., Latif,A., and Shah,M.H., (2012), Coupled and tripled coincidence point results without compatibility, Fixed Point Theory Appl., 2012, 2012: 77.
  • Harjani,J., Lopez,B. and Sadarangani K., (2011), Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal., 74, pp.1749-1760.
  • Harjani,J. and Sadarangni,K., (2009), Fixed point theorems for weakly contraction mappings in par- tially ordered sets, Nonlinear Anal., 71, pp.3403-3410.
  • Harjani,J. and Sadarangani,K., (2010), Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal., 72, pp.1188-1197.
  • Jain,M., Gupta,N., and Kumar,S., (2014), A New Technique to Compute Coupled Coincidence Points
  • Chinese Journal of Mathematics, Vol.2014, Article ID 652107, 6 pages.
  • Jain,M., Tas,K., Kumar,S., and Gupta,N., (2012), Coupled common fixed points involving a (ϕ, ψ)- contractive condition for mixed g-monotone operators in partially ordered metric spaces, J. Inequal. Appl., 2012, 2012:285.
  • Karapinar,E., Luong,N.V., and Thuan N.X., (2012), Coupled coincidence points for mixed monotone operators in partially ordered metric spaces, Arab J Math, 1, pp.329-339. DOI 10.1007/s40065-012- 0
  • Khan,M.S., Swaleh,M., and Sessa,S., (1984), Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30(1), pp.1-9.
  • Lakshmikantham,V. and ´Ciri´c,L.B., (2009), Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70, pp.4341-4349.
  • Luong,N.V. and Thuan,N.X., (2010), Coupled fixed point theorems in partially ordered metric spaces, Bull. Math. Anal. Appl., 2, pp.16-24.
  • Meir A. and Keeler E., (1969), A theorem on contraction mappings, J. Math. Anal. Appl., 28, pp.326
  • Nashine,H.K., Kadelburg,Z., and Radenovi´c,S., (2012), Coupled common fixed point theorems for w*-compatible mappings in ordered cone metric spaces, Appl. Math. Comput., 218, pp.5422-5432.
  • Nieto,J.J. and L´opez,R.R., (2005), Contractive mapping theorems in partially ordered sets and appli- cations to ordinary differential equations, Order, 22(3), pp.223-239.
  • Nieto,J.J. and L´opez,R.R., (2007), Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary dierential equations, Acta Math. Sin. (Engl. Ser.), 23(12), pp.2205-2212.
  • Rasouli,S.H. and Bahrampour,M., (2011), A remark on the coupled fixed point theorems for mixed monotone operators in partially ordered metric spaces, J. Math. Comput. Sci., 3(2), pp.246-261.
  • Ran,A.C.M. and Reurings,M.C.B., (2004), A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132(5), pp.1435-1443.
  • Su,Y., Feng,Q., Zhang,J., Cheng,Q., and Yan,F., (2012), A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl., 2012, 2012:152.
  • Sintunavarat,W., Cho,Y.J., and Kumam,P., (2011), Coupled coincidence point theorems for contrac- tions without commutative condition in intuitionistic fuzzy normed spaces, Fixed Point Theory Appl., , 2011: 81.
  • Samet,B., Karapinar,E., Aydi,H., and Raji´c,V. ´C., (2013), Discussion on some coupled fixed point theorems, Fixed Point Theory Appl., 2013 2013:50.
  • Sintunavarat,W., Petruel,A. and Kumam,P., (2012) Common coupled fixed point theorems for w*- compatible mappings without mixed monotone property, Rend. Circ. Mat. Palermo, 61, pp.361-383. DOI 10.1007/s12215-012-0096-0.
  • Turinici,M., (1986), Abstract comparison principles and multivariable Gronwall-Bellman inequalities, J. Math. Anal. Appl., 117(1), pp.100-127.

A DISCUSSION ON SOME RECENT COUPLED FIXED POINT RESULTS VIA NEW GENERALIZED NONLINEAR CONTRACTIVE CONDITIONS

Year 2017, Volume: 7 Issue: 1, 110 - 130, 01.06.2017

Abstract

Recently, Samet et al. [34], by using the equivalence of the three basic metrics showed that certain coupled fi xed point results can be obtained immediately from the well-known fi xed point theorems. In the setting of partially ordered metric spaces, we establish a generalization of the recent coupled fixed / coincidence point results under new nonlinear contractive conditions. The signi cant feature of the presented work is that, our obtained results are not the immediate consequence of the already existing results in the literature. Presented work generalizes some of the results of Bhaskar and Lakshmikantham [6], Berinde [7], Choudhury et al. [10], Harjani et al. [17], Jain et al. [21] , Karapinar et al. [22], Luong and Thuan [25], and Rasouli and Bahrampour [30].

References

  • Alotaibi,A. and Alsulami,S.M., (2011), Coupled coincidence points for monotone operators in partially ordered metric spaces, Fixed Point Theory Appl. 2011, 2011: 44.
  • Abbas,M., Khan,M.A., and Radenovi´c,S., (2010), Common coupled fixed point theorem in cone metric space for w-compatible mappings, Appl. Math. Comput., 217, pp.195-202.
  • Agarwal,R.P., Sintunavarat,W., and Kumam,P., (2013), Coupled coincidence point and common cou- pled fixed point theorems lacking the mixed monotone property, Fixed Point Theory Appl. 2013, :22.
  • Banach,S., (1922), Surles operations dans les ensembles et leur application aux equation sitegrales, Fund. Math., 3, pp.133-181.
  • Boyd,D.W. and Wong,J.S.W., (1969), On nonlinear contractions, Proc. Amer. Math. Soc., 20, pp.458
  • Bhaskar,T.G. and Lakshmikantham,V., (2006), Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65(7), pp.1379-1393.
  • Berinde,V., (2011), Generalized coupled fixed point theorems for mixed monotone mappings partially ordered metric spaces, Nonlinear Anal., 74, pp.7347-7355.
  • ´Ciri´c,L.B., (1974), A generalization of Banachs contraction principle, Proc. Amer. Math. Soc., 45, pp.267-273.
  • Choudhury,B.S. and Kundu,A., (2010), A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal., 73, pp.2524-2531.
  • Choudhury,B.S., Metiya,N., and Kundu,A., (2011), Coupled coincidence point theorems in ordered metric spaces, Ann. Univ. Ferrara, 57, pp.1-16.
  • Chandok,S. and Tas,K., (2014), An original coupled coincidence point result for a pair of mappings without MMP, J. Inequal. Appl., 2014, 2014:61.
  • Dutta,P. and Choudhury,B.S., (2008), A generalization of contractions in partially ordered metric spaces, Appl. Anal., 87, pp.109-116.
  • Dori´c,D., Kadelburg,Z., and Radenovi´c,S., (2012), Coupled fixed point results for mappings without mixed monotone property, Appl. Math. Lett., DOI 10.1016/j.aml.2012.02.022.
  • Guo,D. and Lakshmikantham,V., (1987), Coupled fixed points of nonlinear operators with applica- tions, Nonlinear Anal., 11, pp.623-632.
  • Haghi, R.H., Rezapour,Sh., and Shahzad,N., (2011), Some fixed point generalizations are not real generalizations, Nonlinear Anal., 74, pp.1799-1803.
  • Hussain,N., Latif,A., and Shah,M.H., (2012), Coupled and tripled coincidence point results without compatibility, Fixed Point Theory Appl., 2012, 2012: 77.
  • Harjani,J., Lopez,B. and Sadarangani K., (2011), Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal., 74, pp.1749-1760.
  • Harjani,J. and Sadarangni,K., (2009), Fixed point theorems for weakly contraction mappings in par- tially ordered sets, Nonlinear Anal., 71, pp.3403-3410.
  • Harjani,J. and Sadarangani,K., (2010), Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal., 72, pp.1188-1197.
  • Jain,M., Gupta,N., and Kumar,S., (2014), A New Technique to Compute Coupled Coincidence Points
  • Chinese Journal of Mathematics, Vol.2014, Article ID 652107, 6 pages.
  • Jain,M., Tas,K., Kumar,S., and Gupta,N., (2012), Coupled common fixed points involving a (ϕ, ψ)- contractive condition for mixed g-monotone operators in partially ordered metric spaces, J. Inequal. Appl., 2012, 2012:285.
  • Karapinar,E., Luong,N.V., and Thuan N.X., (2012), Coupled coincidence points for mixed monotone operators in partially ordered metric spaces, Arab J Math, 1, pp.329-339. DOI 10.1007/s40065-012- 0
  • Khan,M.S., Swaleh,M., and Sessa,S., (1984), Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30(1), pp.1-9.
  • Lakshmikantham,V. and ´Ciri´c,L.B., (2009), Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70, pp.4341-4349.
  • Luong,N.V. and Thuan,N.X., (2010), Coupled fixed point theorems in partially ordered metric spaces, Bull. Math. Anal. Appl., 2, pp.16-24.
  • Meir A. and Keeler E., (1969), A theorem on contraction mappings, J. Math. Anal. Appl., 28, pp.326
  • Nashine,H.K., Kadelburg,Z., and Radenovi´c,S., (2012), Coupled common fixed point theorems for w*-compatible mappings in ordered cone metric spaces, Appl. Math. Comput., 218, pp.5422-5432.
  • Nieto,J.J. and L´opez,R.R., (2005), Contractive mapping theorems in partially ordered sets and appli- cations to ordinary differential equations, Order, 22(3), pp.223-239.
  • Nieto,J.J. and L´opez,R.R., (2007), Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary dierential equations, Acta Math. Sin. (Engl. Ser.), 23(12), pp.2205-2212.
  • Rasouli,S.H. and Bahrampour,M., (2011), A remark on the coupled fixed point theorems for mixed monotone operators in partially ordered metric spaces, J. Math. Comput. Sci., 3(2), pp.246-261.
  • Ran,A.C.M. and Reurings,M.C.B., (2004), A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132(5), pp.1435-1443.
  • Su,Y., Feng,Q., Zhang,J., Cheng,Q., and Yan,F., (2012), A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl., 2012, 2012:152.
  • Sintunavarat,W., Cho,Y.J., and Kumam,P., (2011), Coupled coincidence point theorems for contrac- tions without commutative condition in intuitionistic fuzzy normed spaces, Fixed Point Theory Appl., , 2011: 81.
  • Samet,B., Karapinar,E., Aydi,H., and Raji´c,V. ´C., (2013), Discussion on some coupled fixed point theorems, Fixed Point Theory Appl., 2013 2013:50.
  • Sintunavarat,W., Petruel,A. and Kumam,P., (2012) Common coupled fixed point theorems for w*- compatible mappings without mixed monotone property, Rend. Circ. Mat. Palermo, 61, pp.361-383. DOI 10.1007/s12215-012-0096-0.
  • Turinici,M., (1986), Abstract comparison principles and multivariable Gronwall-Bellman inequalities, J. Math. Anal. Appl., 117(1), pp.100-127.
There are 37 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Manısh Jaın This is me

Neetu Gupta This is me

S. Kumar This is me

Publication Date June 1, 2017
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite