BibTex RIS Cite

ADAPTIVE METHODS FOR SOLVING OPERATOR EQUATIONS BY USING FRAMES OF SUBSPACES

Year 2017, Volume: 7 Issue: 1, 142 - 153, 01.06.2017

Abstract

In this paper, using a frame of subspaces we transform an operator equation to an equivalent l2-problem. Then, we propose an adaptive algorithm to solve the problem and investigate the optimality and complexity properties of the algorithm.

References

  • Casazza,P.G., (2000), The art of frame theory, Taiwaness J. Math., 4, pp.129-201.
  • Casazza,P.G. and Kutyniok, G., (2004), Frames of subspaces, Wavelets, Frames and Operator Theory, Contemp. Math. , Amer. Math. Soc, 345, pp.87-113.
  • Christensen,O., (2003), An Introduction to Frames and Riesz Bases, Birkhauser, Boston.
  • Cohen,A., Dahmen,W., and DeVore,R., (2001), Adaptive wavelet methods for elliptic operator equa- tions: convergence rates, Math. of comp., 70, pp.27-75.
  • Cohen,A., Dahmen,W., and DeVore,R., (2002), Adaptive wavelets methods II-beyond the elliptic case, Found. of Comp. Math., 2, pp.203-245.
  • Dahlke,S., Dahmen,W., and Urban,K., (2002), Adaptive wavelet methods for saddle point problems- optimal convergence rates, SIAM J. Numer. Anal., 40, pp.1230–1262.
  • Dahlke,S., Fornasier,M., and Raasch,T., (2007), Adaptive frame methods for elliptic operator equa- tions, Advances in comp. Math., 27, pp.27-63.
  • Dahlke,S., Raasch,T., and Werner,M., (2007), Adaptive frame methods for elliptic operator equations: the steepest descent approach, IMA J. Numer. Anal., 27, pp.717-740.
  • DeVore,R., (1998), Nonlinear approximation, Acta Numer., 7, pp. 51-150.
Year 2017, Volume: 7 Issue: 1, 142 - 153, 01.06.2017

Abstract

References

  • Casazza,P.G., (2000), The art of frame theory, Taiwaness J. Math., 4, pp.129-201.
  • Casazza,P.G. and Kutyniok, G., (2004), Frames of subspaces, Wavelets, Frames and Operator Theory, Contemp. Math. , Amer. Math. Soc, 345, pp.87-113.
  • Christensen,O., (2003), An Introduction to Frames and Riesz Bases, Birkhauser, Boston.
  • Cohen,A., Dahmen,W., and DeVore,R., (2001), Adaptive wavelet methods for elliptic operator equa- tions: convergence rates, Math. of comp., 70, pp.27-75.
  • Cohen,A., Dahmen,W., and DeVore,R., (2002), Adaptive wavelets methods II-beyond the elliptic case, Found. of Comp. Math., 2, pp.203-245.
  • Dahlke,S., Dahmen,W., and Urban,K., (2002), Adaptive wavelet methods for saddle point problems- optimal convergence rates, SIAM J. Numer. Anal., 40, pp.1230–1262.
  • Dahlke,S., Fornasier,M., and Raasch,T., (2007), Adaptive frame methods for elliptic operator equa- tions, Advances in comp. Math., 27, pp.27-63.
  • Dahlke,S., Raasch,T., and Werner,M., (2007), Adaptive frame methods for elliptic operator equations: the steepest descent approach, IMA J. Numer. Anal., 27, pp.717-740.
  • DeVore,R., (1998), Nonlinear approximation, Acta Numer., 7, pp. 51-150.
There are 9 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

H. Jamali This is me

K.h. Shokri Ternoniz This is me

Publication Date June 1, 2017
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite