BibTex RIS Cite

INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF THE PSEUDO-GALILEAN SPACE G13

Year 2016, Volume: 6 Issue: 2, 175 - 184, 01.12.2016

Abstract

In this paper, we study inextensible ows of curves in 3-dimensional pseudo- Galilean space. We give necessary and sucient conditions for inextensible ows of curves according to equiform geometry in pseudo-Galilean space.

References

  • Desbrun,M. and Cani-Gascuel,M.P., (1998), Active implicit surface for animation, Proc. Graphics Interface-Canadian Inf. Process. Soc., pp.143-150.
  • Divjak,B., (2003), Special curves on ruled surfaces in Galilean and pseudo-Galilean space, Acta Math. Hungar. 98(3), pp. 203-215.
  • Divjak,B., (1998), Curves in pseudo-Galilean geometry, Annales Univ. Sci. Budapest, 41, pp. 117-128.
  • Divjak,B. and Milin-Sipus,Z., (2003), Special curves on the ruled surfaces in Galilean and pseudo Galilean space, Acta Math. Hungar., 98(3), pp. 203-215.
  • Divjak,B. and Erjavec,Z., (2008), The equiform differential geometry of curves in the pseudo-Galilean space, Mathematical Communitations, 13, pp. 321-331.
  • Gage,M. and Hamilton,R.S., (1986), The heat equation shrinking convex plane curves, J. Differential Geom., 23, pp. 69-96.
  • Grayson,M., (1987), The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26, pp. 285-314.
  • Kass,M., Witkin,A. and Terzopoulos,D., (1987), Snakes: active contour models, Proc. 1st Int. Con- ference on Computer Vision, pp. 259-268.
  • Kwon,D.Y., Park,F.C. and Chi,D.P., (2005), Inextensible flows of curves and developable surfaces,Applied Mathematics Letters, 18, pp. 1156-1162.
  • Kwon,D.Y. and Park,F.C., (1999), Evolution of inelastic plane curves, Appl. Math. Lett., 12 pp. 119.
  • Latifi,D. and Razavi,A., (2008), Inextensible flows of curves in Minkowskian Space, Adv. Studies Theor. Phys. 2(16), pp. 761-768.
  • Lu,H.Q., Todhunter,J.S. and Sze,T.W., (1993), Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP, Image Underst., 56, pp. 265-285 .
  • Ogrenmis,A.O. and Yeneroglu,M., (2010), Inextensible curves in the Galilean space, International Journal of the Physical Sciences, 5(9),pp. 1424-1427.
  • Ogrenmis,A.O., Ergut,M. and Bektas,M., (2007), On the Helices in the Galilean Space G3, Iran. J.Sci, Tech. Trans. A Sci., 31(2), pp. 177-181.
  • Pavkovic,B.J., (1986), Equiform geometry of curves in the isotropic space I13and I23, Rad JAZU., pp. 44.
  • Pavkovic,B.J. and Kamenarovic,I., (1987) ,The equiform differential geometry of curves in the Galilean space G3, Glasnik Mat. 22(42), pp. 449-457.
  • Unger,D.J., (1991), Developable surfaces in elastoplastic fracture mechanics, Int. J. Fract., 50, pp. 38.
  • Yoon,D.W., (2011), Inelastic flows of curves according to equiform in Galilean space, Journal of the Chungcheong Mathematical Society, 24(4).
Year 2016, Volume: 6 Issue: 2, 175 - 184, 01.12.2016

Abstract

References

  • Desbrun,M. and Cani-Gascuel,M.P., (1998), Active implicit surface for animation, Proc. Graphics Interface-Canadian Inf. Process. Soc., pp.143-150.
  • Divjak,B., (2003), Special curves on ruled surfaces in Galilean and pseudo-Galilean space, Acta Math. Hungar. 98(3), pp. 203-215.
  • Divjak,B., (1998), Curves in pseudo-Galilean geometry, Annales Univ. Sci. Budapest, 41, pp. 117-128.
  • Divjak,B. and Milin-Sipus,Z., (2003), Special curves on the ruled surfaces in Galilean and pseudo Galilean space, Acta Math. Hungar., 98(3), pp. 203-215.
  • Divjak,B. and Erjavec,Z., (2008), The equiform differential geometry of curves in the pseudo-Galilean space, Mathematical Communitations, 13, pp. 321-331.
  • Gage,M. and Hamilton,R.S., (1986), The heat equation shrinking convex plane curves, J. Differential Geom., 23, pp. 69-96.
  • Grayson,M., (1987), The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26, pp. 285-314.
  • Kass,M., Witkin,A. and Terzopoulos,D., (1987), Snakes: active contour models, Proc. 1st Int. Con- ference on Computer Vision, pp. 259-268.
  • Kwon,D.Y., Park,F.C. and Chi,D.P., (2005), Inextensible flows of curves and developable surfaces,Applied Mathematics Letters, 18, pp. 1156-1162.
  • Kwon,D.Y. and Park,F.C., (1999), Evolution of inelastic plane curves, Appl. Math. Lett., 12 pp. 119.
  • Latifi,D. and Razavi,A., (2008), Inextensible flows of curves in Minkowskian Space, Adv. Studies Theor. Phys. 2(16), pp. 761-768.
  • Lu,H.Q., Todhunter,J.S. and Sze,T.W., (1993), Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP, Image Underst., 56, pp. 265-285 .
  • Ogrenmis,A.O. and Yeneroglu,M., (2010), Inextensible curves in the Galilean space, International Journal of the Physical Sciences, 5(9),pp. 1424-1427.
  • Ogrenmis,A.O., Ergut,M. and Bektas,M., (2007), On the Helices in the Galilean Space G3, Iran. J.Sci, Tech. Trans. A Sci., 31(2), pp. 177-181.
  • Pavkovic,B.J., (1986), Equiform geometry of curves in the isotropic space I13and I23, Rad JAZU., pp. 44.
  • Pavkovic,B.J. and Kamenarovic,I., (1987) ,The equiform differential geometry of curves in the Galilean space G3, Glasnik Mat. 22(42), pp. 449-457.
  • Unger,D.J., (1991), Developable surfaces in elastoplastic fracture mechanics, Int. J. Fract., 50, pp. 38.
  • Yoon,D.W., (2011), Inelastic flows of curves according to equiform in Galilean space, Journal of the Chungcheong Mathematical Society, 24(4).
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Handan Öztekin This is me

Hülya Gün Bozok This is me

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 6 Issue: 2

Cite