BibTex RIS Cite

STABILITY OF A FUNCTIONAL EQUATION IN COMPLEX BANACH SPACES

Year 2016, Volume: 6 Issue: 2, 307 - 314, 01.12.2016

Abstract

Using fixed point technique, in the present paper , we wish to examine generalization of the Hyers-Ulam-Rassias stability theorem for the functional equations f 2 x + i y + f x + 2 i y = 4 f x + i y + f x + f y 0.1 and f 2 x + i y − f i x − 2 y = − 4 f i x − y + f x − f − y 0.2 in complex Banach spaces .

References

  • Czerwik,S., (1992) On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg,62, pp. 59-64.
  • Chang,I.S. and Kim,H.M., (2002), On the Hyers-Ulam stability of quadratic functional equations, J. Ineq. Pure App. Math. 3 No. 3 Art. 33, pp. 1-12.
  • Forti,G.L., (1995), Hyers-Ulam stability of functional equations in several variables, Aeq. Math., 50, pp. 143-190.
  • Gavruta,P., (1982), A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Func. Anal., 46, pp. 126-130.
  • Hyers,D.H., (1941), On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27, pp. 222-224.
  • Jun,K.W., Kim,H.M. and Lee,D.O., (2002), On the stability of a quadratic functional equation, J. Chung. Math. Sci., volume 15, no.2, pp. 73-84.
  • Jun,K.W., Shin,D.S. and Kim,B.D., (1999), On Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl. 239, pp. 20-29.
  • Jung,S.M., (1999), On the Hyers-Ulam-Rassias stability of a quadratic functional equations, J. Math. Anal. Appl. 232, pp. 384-393.
  • Rassias,T.M., (1978), On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72, pp. 297-300.
  • Ulam,S.M., (1960), Problems in Modern Mathematics, Cahp. VI, Wiley, New York.
  • Diaz,J. and Margolis,B., (1968), A fixed point theorem of alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74, pp. 305-309.
Year 2016, Volume: 6 Issue: 2, 307 - 314, 01.12.2016

Abstract

References

  • Czerwik,S., (1992) On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg,62, pp. 59-64.
  • Chang,I.S. and Kim,H.M., (2002), On the Hyers-Ulam stability of quadratic functional equations, J. Ineq. Pure App. Math. 3 No. 3 Art. 33, pp. 1-12.
  • Forti,G.L., (1995), Hyers-Ulam stability of functional equations in several variables, Aeq. Math., 50, pp. 143-190.
  • Gavruta,P., (1982), A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Func. Anal., 46, pp. 126-130.
  • Hyers,D.H., (1941), On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27, pp. 222-224.
  • Jun,K.W., Kim,H.M. and Lee,D.O., (2002), On the stability of a quadratic functional equation, J. Chung. Math. Sci., volume 15, no.2, pp. 73-84.
  • Jun,K.W., Shin,D.S. and Kim,B.D., (1999), On Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl. 239, pp. 20-29.
  • Jung,S.M., (1999), On the Hyers-Ulam-Rassias stability of a quadratic functional equations, J. Math. Anal. Appl. 232, pp. 384-393.
  • Rassias,T.M., (1978), On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72, pp. 297-300.
  • Ulam,S.M., (1960), Problems in Modern Mathematics, Cahp. VI, Wiley, New York.
  • Diaz,J. and Margolis,B., (1968), A fixed point theorem of alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74, pp. 305-309.
There are 11 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Pratap Mondal This is me

T. K. Samanta This is me

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 6 Issue: 2

Cite