BibTex RIS Cite

ON CERTAIN TOPOLOGICAL INDICES OF THE DERIVED GRAPHS OF SUBDIVISION GRAPHS

Year 2016, Volume: 6 Issue: 2, 324 - 332, 01.12.2016

Abstract

The derived graph [G]y of a graph G is the graph having the same vertex set as G, with two vertices of [G]y being adjacent if and only if their distance in G is two. Topological indices are valuable in the study of QSAR/QSPR. There are numerous applications of graph theory in the eld of structural chemistry. In this paper, we compute generalized Randic, general Zagreb, general sum-connectivity, ABC, GA; ABC4, and GA5 indices of the derived graphs of subdivision graphs.

References

  • Ashrafi,A.R., Doˇsli´c,T., and Hamzeh,A., (2010), The Zagreb coindices of graph operations, Discrete Appl. Math., 158, pp. 1571–1578.
  • Basavanagoud,B., Gutman,I. and Gali,C.S., (2015), On second Zagreb index and coindex of some derived graphs, Kragujevac J. Sci., 37, pp. 113–121.
  • Doˇsli´c,T., (2008), Vertex-weighted Wiener polynomials for composite graphs, Ars Mathematica Con- tempooranea, 1, pp. 66–80.
  • Estrada,E., Torres,L., Rodriguez,L. and Gutman,I., (1998), An atom-bond connectivity index: Mod- elling the enthalpy of formation of alkanes. Indian J. Chem., 37A, pp. 849–855.
  • Furtula,B., Graovac,A. and Vukiˇcevi´c,D., (2010), Augmented Zagreb index. Journal of Mathematical Chemistry., 48, pp. 370–380.
  • Ghorbani,M. and HosseinzadehM.A., (2010), Computing ABC4index of nanostar dendrimers, Opto- electron. Adv. Mater.-Rapid Commun., 4(9), pp. 1419–1422.
  • Graovac,A., Ghorbani,M. and Hosseinzadeh,M.A., Computing fifth geometric-arithmetic index for nanostar dendrimers., J. Math. Nanosci, 1, pp. 33–42.
  • Gutman,I. and Trinajsti´c,N., (1972), Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17, pp. 535–538.
  • Gutman,I., (1994), Selected properties of the Schultz molecular topological index, J. Chem. Inf. Com- put. Sci., 34, pp. 1087–1089.
  • Gutman,I., Furtula,B. and Elphick,C., (2014), Three new/old vertexdegreebased topological indices, MATCH Commun. Math. Comput. Chem., 72, pp. 617–632.
  • Hande,S.P., Jog,S.R., Ramane,H.S., Hampiholi,P.R., Gutman,I. and Durgi,B.S., (2013), Derived graphs of subdivision graphs, Kragujevac J. Sci., 37(2), pp. 319–323.
  • Harary,F., (1969), Graph Theory, Addison–Wesely, Reading.
  • Hosamani,S.M. and Gutman,I., (2014), Zagreb indices of transformation graphs and total transfor- mation graphs, Appl. Math. Comput., 247, pp. 1156-1160.
  • Hosamani,S.M. and Basavanagoud,B., (2015), New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem., 74(1), pp. 97–101.
  • Li,X. and Shi,Y., (2008), A survey on the Randi´c index, MATCH Commun. Math. Comput. Chem., 59(1), pp. 127-156.
  • Li,X. and Zhao,H., (2004), Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem., 50, pp. 57-62.
  • Nadeem,M.F., Zafar,S. and Zahid,Z., (2015), Certain topological indicies of the line graph of subdiv- sion graphs, Appl. Math. Comput., (271), pp. 790–794.
  • Randi´c,M., (1974), On characterization of molecular branching, J. Am. Chem. Soc., 97, pp. 6609–6615. [19] Ranjini,P.S., Lokesha,V. and Cangul,I.N., (2011), On the Zagreb indices of the line graphs of the subdivision graphs, Appl. Math. Comput., 218, pp. 699–702.
  • Ranjini,P.S., Lokesha,V. and Rajan,M.A., (2011), On the Shultz index of the subdivision graphs, Adv. Stud. Contemp. Math., 21(3), pp. 279-290.
  • Shirdel,G.H., Rezapour,H. and Sayadi,A.M., (2013), The hyper-Zagreb index of graph operations, Iran. J. Math. Chem., 4(2), pp. 213–220.
  • Su,G. and Xu,L., (2015), Topological indices of the line graph of subdivision graphs and their Schur- bounds, Appl. Math. Comput., 253, pp. 395–401.
  • Todeschini,R. and Consonni,V., (2000), Handbook of Molecular Descriptors, Wiley-VCH, Weinheim. [24] Vukicevic,D. and Furtula,B., (2009), Topological index based on the ratios of geometrical and arith- metical means of end-vertex degrees of edges, J. Math. Chem., 46, pp. 1369–1376.
  • Yu,G. and Feng,L., (2013), On connective eccentricity index of graphs, MATCH Commun. Math. Comput. Chem., 69, pp. 611-628.
  • Zhou,B. and Trinajsti´c,N., (2010), On general sum-connectivity index, J. Math. Chem., 47, pp. 210– 218.
Year 2016, Volume: 6 Issue: 2, 324 - 332, 01.12.2016

Abstract

References

  • Ashrafi,A.R., Doˇsli´c,T., and Hamzeh,A., (2010), The Zagreb coindices of graph operations, Discrete Appl. Math., 158, pp. 1571–1578.
  • Basavanagoud,B., Gutman,I. and Gali,C.S., (2015), On second Zagreb index and coindex of some derived graphs, Kragujevac J. Sci., 37, pp. 113–121.
  • Doˇsli´c,T., (2008), Vertex-weighted Wiener polynomials for composite graphs, Ars Mathematica Con- tempooranea, 1, pp. 66–80.
  • Estrada,E., Torres,L., Rodriguez,L. and Gutman,I., (1998), An atom-bond connectivity index: Mod- elling the enthalpy of formation of alkanes. Indian J. Chem., 37A, pp. 849–855.
  • Furtula,B., Graovac,A. and Vukiˇcevi´c,D., (2010), Augmented Zagreb index. Journal of Mathematical Chemistry., 48, pp. 370–380.
  • Ghorbani,M. and HosseinzadehM.A., (2010), Computing ABC4index of nanostar dendrimers, Opto- electron. Adv. Mater.-Rapid Commun., 4(9), pp. 1419–1422.
  • Graovac,A., Ghorbani,M. and Hosseinzadeh,M.A., Computing fifth geometric-arithmetic index for nanostar dendrimers., J. Math. Nanosci, 1, pp. 33–42.
  • Gutman,I. and Trinajsti´c,N., (1972), Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17, pp. 535–538.
  • Gutman,I., (1994), Selected properties of the Schultz molecular topological index, J. Chem. Inf. Com- put. Sci., 34, pp. 1087–1089.
  • Gutman,I., Furtula,B. and Elphick,C., (2014), Three new/old vertexdegreebased topological indices, MATCH Commun. Math. Comput. Chem., 72, pp. 617–632.
  • Hande,S.P., Jog,S.R., Ramane,H.S., Hampiholi,P.R., Gutman,I. and Durgi,B.S., (2013), Derived graphs of subdivision graphs, Kragujevac J. Sci., 37(2), pp. 319–323.
  • Harary,F., (1969), Graph Theory, Addison–Wesely, Reading.
  • Hosamani,S.M. and Gutman,I., (2014), Zagreb indices of transformation graphs and total transfor- mation graphs, Appl. Math. Comput., 247, pp. 1156-1160.
  • Hosamani,S.M. and Basavanagoud,B., (2015), New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem., 74(1), pp. 97–101.
  • Li,X. and Shi,Y., (2008), A survey on the Randi´c index, MATCH Commun. Math. Comput. Chem., 59(1), pp. 127-156.
  • Li,X. and Zhao,H., (2004), Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem., 50, pp. 57-62.
  • Nadeem,M.F., Zafar,S. and Zahid,Z., (2015), Certain topological indicies of the line graph of subdiv- sion graphs, Appl. Math. Comput., (271), pp. 790–794.
  • Randi´c,M., (1974), On characterization of molecular branching, J. Am. Chem. Soc., 97, pp. 6609–6615. [19] Ranjini,P.S., Lokesha,V. and Cangul,I.N., (2011), On the Zagreb indices of the line graphs of the subdivision graphs, Appl. Math. Comput., 218, pp. 699–702.
  • Ranjini,P.S., Lokesha,V. and Rajan,M.A., (2011), On the Shultz index of the subdivision graphs, Adv. Stud. Contemp. Math., 21(3), pp. 279-290.
  • Shirdel,G.H., Rezapour,H. and Sayadi,A.M., (2013), The hyper-Zagreb index of graph operations, Iran. J. Math. Chem., 4(2), pp. 213–220.
  • Su,G. and Xu,L., (2015), Topological indices of the line graph of subdivision graphs and their Schur- bounds, Appl. Math. Comput., 253, pp. 395–401.
  • Todeschini,R. and Consonni,V., (2000), Handbook of Molecular Descriptors, Wiley-VCH, Weinheim. [24] Vukicevic,D. and Furtula,B., (2009), Topological index based on the ratios of geometrical and arith- metical means of end-vertex degrees of edges, J. Math. Chem., 46, pp. 1369–1376.
  • Yu,G. and Feng,L., (2013), On connective eccentricity index of graphs, MATCH Commun. Math. Comput. Chem., 69, pp. 611-628.
  • Zhou,B. and Trinajsti´c,N., (2010), On general sum-connectivity index, J. Math. Chem., 47, pp. 210– 218.
There are 24 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

S. M. Hosamani This is me

V. Lokesha This is me

I. N. Cangul This is me

K. M. Devendraiah This is me

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 6 Issue: 2

Cite