BibTex RIS Cite

G- F;  -CONTRACTIONS IN PARTIAL RECTANGULAR METRIC SPACES ENDOWED WITH A GRAPH AND FIXED POINT THEOREMS

Year 2016, Volume: 6 Issue: 2, 342 - 353, 01.12.2016

Abstract

In this paper, the notion of G- F;  -contractions in the context of partial rectangular metric spaces endowed with a graph is introduced. Some xed point theorems for G- F;  -contractions are also proved. The results of this paper generalize, extend, and unify some known results. Some examples are provided to illustrate the results proved herein.

References

  • Branciari,A., (2000), A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 1-2, pp. 31-37.
  • Wardowski,D., (2012), Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications, pp. 94.
  • Boyd,D.W. and Wong,J.S.W., (1969), On nonlinear contractions, Proceedings of the American Math- ematical Society, 20(2), pp. 458-464.
  • Jachymski,J., (2008), The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136, pp. 1359-1373.
  • Ciri´c,L.B., (1974), A generalization of Banachs contraction principle, Proc Amer. Math. Soc., 45, pp. 73.
  • Ciri´c,L.B., (1971), Generalized contractions and fxed-point theorems, Publ. lInst Math. (Beograd), , pp. 19-26.
  • Fr´echet,M., (1906), Sur quelques points du calcul fonctionnel, Rendiconti Circolo Mat. Palermo, 22, pp. 1-74.
  • Edelstein,M., (1961), An extension of Banach’s contraction principle, Proc. Amer. Math. Soc., 12, MR 22 #11375, pp. 7-10.
  • Banach,S., (1922), Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fundamenta Mathematicae, 3, pp. 133-181.
  • Matthews,S.G., (1994), Partial metric topology, in: Proc. 8th Summer Conference on General Topol- ogy and Application, Ann. New York Acad. Sci., 728, pp. 183-197.
  • Shukla,S., (2014), Partial rectangular metric spaces and fixed point theorems, The ScientificWorld Journal, 2014, Article ID 756298, pp. 7.
  • Suzuki,T., (2008), A generalized Banach contraction principle that characterizes metric completeness, Proceedings of the American Mathematical Society, 136(5), pp. 1861-1869.
Year 2016, Volume: 6 Issue: 2, 342 - 353, 01.12.2016

Abstract

References

  • Branciari,A., (2000), A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 1-2, pp. 31-37.
  • Wardowski,D., (2012), Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications, pp. 94.
  • Boyd,D.W. and Wong,J.S.W., (1969), On nonlinear contractions, Proceedings of the American Math- ematical Society, 20(2), pp. 458-464.
  • Jachymski,J., (2008), The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136, pp. 1359-1373.
  • Ciri´c,L.B., (1974), A generalization of Banachs contraction principle, Proc Amer. Math. Soc., 45, pp. 73.
  • Ciri´c,L.B., (1971), Generalized contractions and fxed-point theorems, Publ. lInst Math. (Beograd), , pp. 19-26.
  • Fr´echet,M., (1906), Sur quelques points du calcul fonctionnel, Rendiconti Circolo Mat. Palermo, 22, pp. 1-74.
  • Edelstein,M., (1961), An extension of Banach’s contraction principle, Proc. Amer. Math. Soc., 12, MR 22 #11375, pp. 7-10.
  • Banach,S., (1922), Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fundamenta Mathematicae, 3, pp. 133-181.
  • Matthews,S.G., (1994), Partial metric topology, in: Proc. 8th Summer Conference on General Topol- ogy and Application, Ann. New York Acad. Sci., 728, pp. 183-197.
  • Shukla,S., (2014), Partial rectangular metric spaces and fixed point theorems, The ScientificWorld Journal, 2014, Article ID 756298, pp. 7.
  • Suzuki,T., (2008), A generalized Banach contraction principle that characterizes metric completeness, Proceedings of the American Mathematical Society, 136(5), pp. 1861-1869.
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Satish Shukla This is me

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 6 Issue: 2

Cite