BibTex RIS Cite

ON GENERALIZATION OF WEIERSTRASS APPROXIMATION THEOREM FOR A GENERAL CLASS OF POLYNOMIALS AND GENERATING FUNCTIONS

Year 2016, Volume: 6 Issue: 1, 47 - 53, 01.06.2016

Abstract

Here, in this work we present a generalization of theWeierstrass ApproximationTheorem for a general class of polynomials. Then we generalize it for two variablecontinuous function F x; t and prove that on a rectangle [a; b]  -1; 1 ; a  x b; jtj

References

  • Brown,J.W., (1969), New generating functions for classical polynomials, Proc. Amer. Math. Soc. 21, pp. 263-268.
  • Estep,D., (2002), Practical Analysis in One Variable, Spriger, http://www.springer.com/978-0–387- 95484-4
  • Rainville,E.D., (1960), Special Functions, Macmillan, New York; Reprinted by Chelsea Publ. Co., Bronx, New York.
  • Schep,A.R., (2007), Weierstrass’ Proof of The Weierstrass Approximation Theorem, published in the site: www.math.sc.edu/˜schep/weierstrass.pdf
  • Weierstrass,K., (1885), Uber die analytische Darstellbarkeit sogenannter willk, Urlicher Functionen einer reellen Ver, anderlichen, Verl. D. Kgl. Akad. D. Wiss. Berlin 2, pp. 633-639.
Year 2016, Volume: 6 Issue: 1, 47 - 53, 01.06.2016

Abstract

References

  • Brown,J.W., (1969), New generating functions for classical polynomials, Proc. Amer. Math. Soc. 21, pp. 263-268.
  • Estep,D., (2002), Practical Analysis in One Variable, Spriger, http://www.springer.com/978-0–387- 95484-4
  • Rainville,E.D., (1960), Special Functions, Macmillan, New York; Reprinted by Chelsea Publ. Co., Bronx, New York.
  • Schep,A.R., (2007), Weierstrass’ Proof of The Weierstrass Approximation Theorem, published in the site: www.math.sc.edu/˜schep/weierstrass.pdf
  • Weierstrass,K., (1885), Uber die analytische Darstellbarkeit sogenannter willk, Urlicher Functionen einer reellen Ver, anderlichen, Verl. D. Kgl. Akad. D. Wiss. Berlin 2, pp. 633-639.
There are 5 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

H. Kumar This is me

M. A. Pathan This is me

Publication Date June 1, 2016
Published in Issue Year 2016 Volume: 6 Issue: 1

Cite