BibTex RIS Cite

Solvability of Second Order Delta-Nabla p-Laplacian m-point Eigenvalue Problem on Time Scales

Year 2015, Volume: 5 Issue: 1, 98 - 109, 01.06.2015

Abstract

In this paper, we are concerned with the following eigenvalue problem of m-point boundary value problem for p-Laplacian dynamic equation on time scales, ϕp u ∆ t ∇ + λh t f u t = 0, t ∈ [a, b]T , u a − u ∆ a = m∑−2 i=1 u ∆ ξi , u ∆ b = 0, m ≥ 3, where ϕp u = |u| p−2u, p > 1 and λ > 0 is a real parameter. Under certain assumptions, some new results on existence of one or two positive solutions and nonexistence are obtained for λ evaluated in different intervals by using Guo-Krasnosel’skii fixed point theorem.

References

  • Agarwal, R. P., O’Regan, D. and Wong, P. J. J., (1999), Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic, Dordrecht, The Netherlands.
  • Agarwal, R. P., Bohner, M. and Rehak, P., (2003), Half-Linear Dynamic Equation, Nonlinear Analysis and Applications: To V. Lakshmikantham on his 80thbirthday, Kluwer Acad. Publ. Dordrecht, 1, pp. 1-57.
  • Agarwal, R. P. and L¨u, H. and O’Regan, D., (2002), Eigenvalues and the one-dimensional p-Laplacian, J. Math. Anal. Appl., 266, pp. 383-400.
  • Anderson, D. R., (2002), Eigenvalue intervals for a second-order mixed-conditions problem on time scale, Int. J. Nonlinear Diff. Eqns., 7, pp. 97-104.
  • Anderson, D. R., (2002), Eigenvalue intervals for a two-point boundary value problem on a measure chain, J. Comp. Appl. Math., 141, (1-2), pp. 57-64.
  • Anderson, D. R., Avery, R. and Henderson, J., (2004), Existence of solutions for a one-dimensional p-Laplacian on time scales, J. Diff. Eqns. Appl., 10, pp. 889-896.
  • Aulbach, B. and Neidhart, L., (2004), Integration on measure chains, in: Proceedings of the Sixth International Conference on Difference Equations, CRC, Boca Raton, FL., pp. 239-252.
  • Bohner, M. and Peterson, A., (2001), Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, Mass, USA.
  • Chyan, C. J. and Henderson, J., (2000), Eigenvalue problems for nonlinear differential equations on a measure chain, J. Math. Anal. Appl., 24, (2), pp. 547-559.
  • Davis, J. M., Henderson, J., Prasad, K. R. and Yin, W. K. C., (2000), Eigenvalue intervals for nonlinear right focal problem, Appl. Anal., 74, pp. 215-231.
  • Davis, J. M., Henderson, J., Prasad, K. R. and Yin, W. K. C., (2000), Solvability of a nonlinear second order conjugate eigenvalue problems on time scales, Abstract and Applied Analysis., 5, pp. 91-100.
  • Fan, J., and Li, L., (2013), Existence of positive solutions for p-Laplacian dynamic equations with derivative on time scales, J. Appl. Math., 2013, pp. 1-7.
  • Guo, D. J. and Lakshmikantham, V., (1988), Nonlinear Problems in Abstract Cones., vol. 5 of Notes and Reports in Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA.
  • Guo, M. and Sun, H. R., (2009), Eigenvalue problems for p-Laplacian dynamic equations on time scales, Bull. Korean Math. Soc., 46, (5), pp. 999-1011.
  • Goodrich, C. S., (2011), Existence of a positive solutions to a Şrst-order p-Laplacian BVP on a time scale, Nonlinear Anal., 74, pp. 1926-1936.
  • Goodrich, C. S., (2012), The existence of a positive solution to a second order delta nabla p-Laplacian BVP on a time scale, Appl. Math. Lett., 25, pp. 157-162.
  • He, Z., (2005), Double positive solutions of boundary value problems for p-Laplacian dynamic equa- tions on time scales, Appl. Anal., 84, (4), pp. 377-390.
  • Hilger, S., (1990), Analysis on measure chains–a uniŞed approach to continuous and discrete calculus, Results Math., 18, No.1-2, pp. 18-56.
  • Infante, G., (2003), Eigenvalues of some non-local boundary-value problems, Proc. Edinburgh Math. Soc, 46, (1), pp. 75-86.
  • Krasnosel’skii, M. A., (1964), Positive solutions of operator equations, P. Noordhoff Ltd, Groningen, The Netherlands.
  • Nageswararao, S., (2011), Solvability of a nonlinear general third order four point eigenvalue problem on time scales, Creat. Math. Inform., 20, (2), pp. 171-182.
  • Prasad, K. R., Nageswararao, S, and Murali, P., (2009), Solvability of a nonlinear general third order two-point eigenvalue problem on time scales, Diff. Eqns. Dyn. Syst., 17, (3), pp. 269-282.
  • Sun, H. R. and Li, W. T., (2006), Positive solutions for nonlinear m-point boundary value problems on time scales, Acta Math. Sinica., 49, (2), pp. 369-380.
  • Sun, H. R. and Li, W. T., (2006), Positive solutions p-Laplacian m-point boundary value problems on time scales, Appl. Math. Comput., 182, (1), pp. 478-491.
  • Sun, H. R., Tang, L. T. and Y. H. Wang., (2007), Eigenvalue problem for p-Laplacian three-point boundary value problems on time scales, J. Math. Anal. Appl., 331, pp. 248-262.
Year 2015, Volume: 5 Issue: 1, 98 - 109, 01.06.2015

Abstract

References

  • Agarwal, R. P., O’Regan, D. and Wong, P. J. J., (1999), Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic, Dordrecht, The Netherlands.
  • Agarwal, R. P., Bohner, M. and Rehak, P., (2003), Half-Linear Dynamic Equation, Nonlinear Analysis and Applications: To V. Lakshmikantham on his 80thbirthday, Kluwer Acad. Publ. Dordrecht, 1, pp. 1-57.
  • Agarwal, R. P. and L¨u, H. and O’Regan, D., (2002), Eigenvalues and the one-dimensional p-Laplacian, J. Math. Anal. Appl., 266, pp. 383-400.
  • Anderson, D. R., (2002), Eigenvalue intervals for a second-order mixed-conditions problem on time scale, Int. J. Nonlinear Diff. Eqns., 7, pp. 97-104.
  • Anderson, D. R., (2002), Eigenvalue intervals for a two-point boundary value problem on a measure chain, J. Comp. Appl. Math., 141, (1-2), pp. 57-64.
  • Anderson, D. R., Avery, R. and Henderson, J., (2004), Existence of solutions for a one-dimensional p-Laplacian on time scales, J. Diff. Eqns. Appl., 10, pp. 889-896.
  • Aulbach, B. and Neidhart, L., (2004), Integration on measure chains, in: Proceedings of the Sixth International Conference on Difference Equations, CRC, Boca Raton, FL., pp. 239-252.
  • Bohner, M. and Peterson, A., (2001), Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, Mass, USA.
  • Chyan, C. J. and Henderson, J., (2000), Eigenvalue problems for nonlinear differential equations on a measure chain, J. Math. Anal. Appl., 24, (2), pp. 547-559.
  • Davis, J. M., Henderson, J., Prasad, K. R. and Yin, W. K. C., (2000), Eigenvalue intervals for nonlinear right focal problem, Appl. Anal., 74, pp. 215-231.
  • Davis, J. M., Henderson, J., Prasad, K. R. and Yin, W. K. C., (2000), Solvability of a nonlinear second order conjugate eigenvalue problems on time scales, Abstract and Applied Analysis., 5, pp. 91-100.
  • Fan, J., and Li, L., (2013), Existence of positive solutions for p-Laplacian dynamic equations with derivative on time scales, J. Appl. Math., 2013, pp. 1-7.
  • Guo, D. J. and Lakshmikantham, V., (1988), Nonlinear Problems in Abstract Cones., vol. 5 of Notes and Reports in Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA.
  • Guo, M. and Sun, H. R., (2009), Eigenvalue problems for p-Laplacian dynamic equations on time scales, Bull. Korean Math. Soc., 46, (5), pp. 999-1011.
  • Goodrich, C. S., (2011), Existence of a positive solutions to a Şrst-order p-Laplacian BVP on a time scale, Nonlinear Anal., 74, pp. 1926-1936.
  • Goodrich, C. S., (2012), The existence of a positive solution to a second order delta nabla p-Laplacian BVP on a time scale, Appl. Math. Lett., 25, pp. 157-162.
  • He, Z., (2005), Double positive solutions of boundary value problems for p-Laplacian dynamic equa- tions on time scales, Appl. Anal., 84, (4), pp. 377-390.
  • Hilger, S., (1990), Analysis on measure chains–a uniŞed approach to continuous and discrete calculus, Results Math., 18, No.1-2, pp. 18-56.
  • Infante, G., (2003), Eigenvalues of some non-local boundary-value problems, Proc. Edinburgh Math. Soc, 46, (1), pp. 75-86.
  • Krasnosel’skii, M. A., (1964), Positive solutions of operator equations, P. Noordhoff Ltd, Groningen, The Netherlands.
  • Nageswararao, S., (2011), Solvability of a nonlinear general third order four point eigenvalue problem on time scales, Creat. Math. Inform., 20, (2), pp. 171-182.
  • Prasad, K. R., Nageswararao, S, and Murali, P., (2009), Solvability of a nonlinear general third order two-point eigenvalue problem on time scales, Diff. Eqns. Dyn. Syst., 17, (3), pp. 269-282.
  • Sun, H. R. and Li, W. T., (2006), Positive solutions for nonlinear m-point boundary value problems on time scales, Acta Math. Sinica., 49, (2), pp. 369-380.
  • Sun, H. R. and Li, W. T., (2006), Positive solutions p-Laplacian m-point boundary value problems on time scales, Appl. Math. Comput., 182, (1), pp. 478-491.
  • Sun, H. R., Tang, L. T. and Y. H. Wang., (2007), Eigenvalue problem for p-Laplacian three-point boundary value problems on time scales, J. Math. Anal. Appl., 331, pp. 248-262.
There are 25 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

S. N. Rao This is me

Publication Date June 1, 2015
Published in Issue Year 2015 Volume: 5 Issue: 1

Cite