BibTex RIS Cite
Year 2015, Volume: 5 Issue: 1, 132 - 144, 01.06.2015

Abstract

References

  • Aldroubi, A., (1995), Portraits of frames, Proc. Amer. Math. Soc., 123 (6) , pp.1661-1668.
  • Casazza, P. G. and Kutyniok, G. (2012), Finite Frames, Birkh¨auser.
  • Casazza, P. G., (2001), Approximation Properties, in Handbook on the Geometry of Banach spaces
  • Vol I, Johnson, W. B. and Lindenstrauss, J., Eds, pp. 271-316. Casazza, P. G., Han, D. and Larson, D. R., (1999), Frames for Banach spaces, Contemp. Math., 247, pp. 149-182.
  • Casazza, P. G. and Christensen, O., (2008), The reconstruction property in Banach spaces and a perturbation theorem, Canad. Math. Bull., 51, pp. 348-358.
  • Casazza, P. G. and Christensen, O., (1997), Perturbation of operators and applications to frame thoery, J. Fourier Anal. Appl., 3 (5), pp. 543-557.
  • Christensen, O. and Heil, C., (1997), Pertubation of Banach frames and atomic decompositions, Math. Nachr., 185, pp. 33-47.
  • Christensen, O., (2008), Frames and Bases: An introductory course, Birkh¨aauser, Boston.
  • Chugh, R., Singh, M. and Vashisht, L. K., (2014), On Λ-type duality of frames in Banach spaces, Int. J. Anal. Appl., 4 (2), pp. 148-158.
  • Daubechies, I., Grossmann, A. and Meyer, Y., (1986), Painless non-orthogonal expansions, J. Math. Phys., 27, pp. 1271-1283.
  • Duffin, R. J. and Schaeffer, A. C., (1952), A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 , pp. 341-366.
  • Feichtinger, H. and Gr¨ochenig, K., (1989), Banach spaces related to integrable group representation- sand their atomic decompositions I, J. Funct Anal., 86 (2), pp. 307-340.
  • Feichtinger, H. and Gr¨ochenig, K., (1989), Banach spaces related to integrable group representation- sand their atomic decompositions II, Monatsh. Math., 108 (2-3), pp. 129-148.
  • Gabor, D., (1946), Theory of communicatons, J. Inst. Elec. Engg., 93, pp. 429-457.
  • Gr¨ochenig, K., (1991), Describing functions: Atomic decompositions versus frames, Monatsh. Math., , pp. 1-41.
  • Han, D. and Larson, D. R., (2000), Frames, bases and group representations, Mem. Amer. Math. Soc., (697), pp. 1-91.
  • Heil. C. and Walnut, D., (1989), Continuous and discrete wavelet transforms, SIAM Rev., 31 (4), pp. 666.
  • Jain, P. K., Kaushik, S. K. and Vashisht, L. K., (2004), Banach frames for conjugate Banach spaces
  • Zeit. Anal. Anwendungen, 23 (4), pp. 713-720. Kaushik, S. K., Vashisht, L. K. and Khattar, G., (2014), Reconstruction property and frames in
  • Banach spaces, Palest. J. Math., 3 (1), pp. 11-26. Khattar, G. and Vashisht, L. K., (2014), The reconstruction property in Banach spaces generated by matrices, Adv. Pure Appl. Math., 5 (3) , pp. 151-160.
  • Khattar, G. and Vashisht, L. K., (2015), Some types of convergence related to the reconstruction property in Banach spaces, Banach J. Math. Anal., 9 (2), pp. 253-275.
  • Vashisht, L. K., (2006), A study of frames in Banach spaces, Ph. D. Thesis, University of Delhi.
  • Vashisht, L. K., (2012), On retro Banach frames of type P , Azerb. J. Math., 2 (1), pp. 82-89.
  • Vashisht, L. K., (2012), On frames in Banach spaces, Commun. Math. Appl., 3 (3), pp. 313-332.
  • Vashisht, L. K., (2012), On Φ-Schauder frames, TWMS J. App. Eng. Math., 2 (1) , pp. 116-120.
  • Vashisht, L. K. and Khattar, G., (2013), On I-reconstruction property, Adv. Pure Math., 3 (3), pp. 330.
  • Vashisht, L. K. and Sharma, S., (2014), Frames of eigenfunctions associated with a boundary value problem, Int. J. Anal., Article ID 590324, 6 pages (2014). doi:10.1155/2014/590324.
  • Vashisht, L. K., (2015), Banach frames generated by compact operators associated with a boundary value problem, accepted for publication by the TWMS J. Pure Appl. Math.

Shadow of Operators on Frames

Year 2015, Volume: 5 Issue: 1, 132 - 144, 01.06.2015

Abstract

Aldroubi introduced two methods for generating frames of a Hilbert space H. In one of his method, one approach is to construct frames for H which are images of a given frame for H under T ∈ B H, H , a collection of all bounded linear operator on H. The other method uses bounded linear operator on ` 2 to generate frames of H. In this paper, we discuss construction of the retro Banach frames in Hilbert spaces which are images of given frames under bounded linear operators on Hilbert spaces. It is proved that the compact operators generated by a certain type of a retro Banach frame can construct a retro Banach frame for the underlying space. Finally, we discuss a linear block associated with a Schauder frame in Banach spaces.

References

  • Aldroubi, A., (1995), Portraits of frames, Proc. Amer. Math. Soc., 123 (6) , pp.1661-1668.
  • Casazza, P. G. and Kutyniok, G. (2012), Finite Frames, Birkh¨auser.
  • Casazza, P. G., (2001), Approximation Properties, in Handbook on the Geometry of Banach spaces
  • Vol I, Johnson, W. B. and Lindenstrauss, J., Eds, pp. 271-316. Casazza, P. G., Han, D. and Larson, D. R., (1999), Frames for Banach spaces, Contemp. Math., 247, pp. 149-182.
  • Casazza, P. G. and Christensen, O., (2008), The reconstruction property in Banach spaces and a perturbation theorem, Canad. Math. Bull., 51, pp. 348-358.
  • Casazza, P. G. and Christensen, O., (1997), Perturbation of operators and applications to frame thoery, J. Fourier Anal. Appl., 3 (5), pp. 543-557.
  • Christensen, O. and Heil, C., (1997), Pertubation of Banach frames and atomic decompositions, Math. Nachr., 185, pp. 33-47.
  • Christensen, O., (2008), Frames and Bases: An introductory course, Birkh¨aauser, Boston.
  • Chugh, R., Singh, M. and Vashisht, L. K., (2014), On Λ-type duality of frames in Banach spaces, Int. J. Anal. Appl., 4 (2), pp. 148-158.
  • Daubechies, I., Grossmann, A. and Meyer, Y., (1986), Painless non-orthogonal expansions, J. Math. Phys., 27, pp. 1271-1283.
  • Duffin, R. J. and Schaeffer, A. C., (1952), A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 , pp. 341-366.
  • Feichtinger, H. and Gr¨ochenig, K., (1989), Banach spaces related to integrable group representation- sand their atomic decompositions I, J. Funct Anal., 86 (2), pp. 307-340.
  • Feichtinger, H. and Gr¨ochenig, K., (1989), Banach spaces related to integrable group representation- sand their atomic decompositions II, Monatsh. Math., 108 (2-3), pp. 129-148.
  • Gabor, D., (1946), Theory of communicatons, J. Inst. Elec. Engg., 93, pp. 429-457.
  • Gr¨ochenig, K., (1991), Describing functions: Atomic decompositions versus frames, Monatsh. Math., , pp. 1-41.
  • Han, D. and Larson, D. R., (2000), Frames, bases and group representations, Mem. Amer. Math. Soc., (697), pp. 1-91.
  • Heil. C. and Walnut, D., (1989), Continuous and discrete wavelet transforms, SIAM Rev., 31 (4), pp. 666.
  • Jain, P. K., Kaushik, S. K. and Vashisht, L. K., (2004), Banach frames for conjugate Banach spaces
  • Zeit. Anal. Anwendungen, 23 (4), pp. 713-720. Kaushik, S. K., Vashisht, L. K. and Khattar, G., (2014), Reconstruction property and frames in
  • Banach spaces, Palest. J. Math., 3 (1), pp. 11-26. Khattar, G. and Vashisht, L. K., (2014), The reconstruction property in Banach spaces generated by matrices, Adv. Pure Appl. Math., 5 (3) , pp. 151-160.
  • Khattar, G. and Vashisht, L. K., (2015), Some types of convergence related to the reconstruction property in Banach spaces, Banach J. Math. Anal., 9 (2), pp. 253-275.
  • Vashisht, L. K., (2006), A study of frames in Banach spaces, Ph. D. Thesis, University of Delhi.
  • Vashisht, L. K., (2012), On retro Banach frames of type P , Azerb. J. Math., 2 (1), pp. 82-89.
  • Vashisht, L. K., (2012), On frames in Banach spaces, Commun. Math. Appl., 3 (3), pp. 313-332.
  • Vashisht, L. K., (2012), On Φ-Schauder frames, TWMS J. App. Eng. Math., 2 (1) , pp. 116-120.
  • Vashisht, L. K. and Khattar, G., (2013), On I-reconstruction property, Adv. Pure Math., 3 (3), pp. 330.
  • Vashisht, L. K. and Sharma, S., (2014), Frames of eigenfunctions associated with a boundary value problem, Int. J. Anal., Article ID 590324, 6 pages (2014). doi:10.1155/2014/590324.
  • Vashisht, L. K., (2015), Banach frames generated by compact operators associated with a boundary value problem, accepted for publication by the TWMS J. Pure Appl. Math.
There are 28 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

R. Chugh This is me

M. Singh This is me

L. K. Vashisht This is me

Publication Date June 1, 2015
Published in Issue Year 2015 Volume: 5 Issue: 1

Cite