BibTex RIS Cite

FIXED POINTS OF CONTRACTIVE SET VALUED MAPPINGS WITH SET VALUED DOMAINS ON A METRIC SPACE WITH GRAPH

Year 2014, Volume: 4 Issue: 2, 169 - 174, 01.12.2014

Abstract

In this article we consider general contractive mappings of the form F : CB X → CB X , where CB X is the set of all nonempty closed and bounded subsets of a complete metric space X endowed with a graph G. We prove some fixed point results for F and discuss how the connectivity of the graph G is related to the fixed points of F.

References

  • Aleomraninejad, S. M. A., Rezapour, Sh., and Shahzad, N., (2012), Some Şxed point results on a metric space with a graph, Topology Appl., 159, 659-663.
  • Assad, N. A., and Kirk, W. A., (1972), Fixed point theorems for set-valued mappings of contractive type, PaciŞc J. Math. 43(3), 553-561.
  • Beg, I., Butt, A. R., and Radojevic, S., (2010), The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl., 60, 1214-1219.
  • Espinola, R., and Kirk, W. A., (2006), Fixed point theorems in R-trees with applications to graph theory, Topology Appl., 153, 1046-1055.
  • Gwozdz-Lukawska, G., and Jachymski, J., (2009), IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356, 453-463.
  • Harary, F., (1972), Graph theory, 3rd Edition, Addison-Wesley, Reading, MA.
  • Jachymski, J., (2007), The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136(4), 1359-1373.
  • Nadler, S. B., (1969), Multi-valued contraction mappings, PaciŞc J. Math., 30(2), 475-488.
  • Nieto, J. J., Pouso, R. L., and Rodriguez-Lopez, R., (2007), Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc., 135, 2505-2517.
  • Nieto, J. J., and Rodriguez-Lopez, R., (2007), Existence and uniqueness of Şxed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica English Ser., 2205
  • Petrusel, A., and Rus, I. A., (2006), Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134, 411-418.
  • Ran, A. C. M., and Reurings, M. C. B., (2004), A Şxed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132, 1435-1443.
Year 2014, Volume: 4 Issue: 2, 169 - 174, 01.12.2014

Abstract

References

  • Aleomraninejad, S. M. A., Rezapour, Sh., and Shahzad, N., (2012), Some Şxed point results on a metric space with a graph, Topology Appl., 159, 659-663.
  • Assad, N. A., and Kirk, W. A., (1972), Fixed point theorems for set-valued mappings of contractive type, PaciŞc J. Math. 43(3), 553-561.
  • Beg, I., Butt, A. R., and Radojevic, S., (2010), The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl., 60, 1214-1219.
  • Espinola, R., and Kirk, W. A., (2006), Fixed point theorems in R-trees with applications to graph theory, Topology Appl., 153, 1046-1055.
  • Gwozdz-Lukawska, G., and Jachymski, J., (2009), IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356, 453-463.
  • Harary, F., (1972), Graph theory, 3rd Edition, Addison-Wesley, Reading, MA.
  • Jachymski, J., (2007), The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136(4), 1359-1373.
  • Nadler, S. B., (1969), Multi-valued contraction mappings, PaciŞc J. Math., 30(2), 475-488.
  • Nieto, J. J., Pouso, R. L., and Rodriguez-Lopez, R., (2007), Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc., 135, 2505-2517.
  • Nieto, J. J., and Rodriguez-Lopez, R., (2007), Existence and uniqueness of Şxed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica English Ser., 2205
  • Petrusel, A., and Rus, I. A., (2006), Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134, 411-418.
  • Ran, A. C. M., and Reurings, M. C. B., (2004), A Şxed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132, 1435-1443.
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

P. Debnath This is me

Publication Date December 1, 2014
Published in Issue Year 2014 Volume: 4 Issue: 2

Cite