BibTex RIS Cite

ON A CRITERION FOR MULTIVALENT HARMONIC FUNCTIONS

Year 2014, Volume: 4 Issue: 1, 50 - 55, 01.06.2014

Abstract

For normalized harmonic functions f z = h z + g z in the open unit disk, a criterion on the analytic part h z for f z to be p-valent and sense-preserving is discussed. Furthermore, several illustrative examples and images of f z satisfying the obtained condition are enumerated.

References

  • Bshouty, D. and Lyzzaik, A., (2011), Close-to-convexity criteria for planar harmonic mappings, Com- plex Anal. Oper. Theory, 5, 767-774.
  • Clunie, J. and Sheil-Small, T., (1984), Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 9, 3-25.
  • Duren, P. L., (2004), Harmonic Mappings in the Plane, Cambridge University Press, Cambridge.
  • Goodman, A. W., (1983), Univalent Functions, Vol. I and Vol. II, Mariner Publishing Company, Tampa, Florida.
  • Hayami, T. and Owa, S., (2011), Hypocycloid of n + 1 cusps harmonic function, Bull. Math. Anal. Appl., 3, 239-246.
  • Hayami, T., (2012), Coefficient conditions for harmonic close-to-convex functions, Abstr. Appl. Anal., , Article ID 413965, 12 pp.
  • Hayami, T., (2013), A sufficient condition for p-valently harmonic functions, Complex Var. Elliptic
  • Equ., Published online. DOI : 10.1080/17476933.2013.826656.
  • Lewy, H., (1936), On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42, 689-692.
  • Mocanu, P. T., (1981), Sufficient conditions of univalency for complex functions in the class C1, Rev. d’Anal. Nume´er. et de Th´eorie Approx., 10, 75-81.
  • Mocanu, P. T., (2009), Three-cornered hat harmonic functions, Complex Var. Elliptic Equ., 54, 1079
  • Mocanu, P. T., (2011), Injectively conditions in the complex plane, Complex Anal. Oper. Theory, 5, 766.
Year 2014, Volume: 4 Issue: 1, 50 - 55, 01.06.2014

Abstract

References

  • Bshouty, D. and Lyzzaik, A., (2011), Close-to-convexity criteria for planar harmonic mappings, Com- plex Anal. Oper. Theory, 5, 767-774.
  • Clunie, J. and Sheil-Small, T., (1984), Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 9, 3-25.
  • Duren, P. L., (2004), Harmonic Mappings in the Plane, Cambridge University Press, Cambridge.
  • Goodman, A. W., (1983), Univalent Functions, Vol. I and Vol. II, Mariner Publishing Company, Tampa, Florida.
  • Hayami, T. and Owa, S., (2011), Hypocycloid of n + 1 cusps harmonic function, Bull. Math. Anal. Appl., 3, 239-246.
  • Hayami, T., (2012), Coefficient conditions for harmonic close-to-convex functions, Abstr. Appl. Anal., , Article ID 413965, 12 pp.
  • Hayami, T., (2013), A sufficient condition for p-valently harmonic functions, Complex Var. Elliptic
  • Equ., Published online. DOI : 10.1080/17476933.2013.826656.
  • Lewy, H., (1936), On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42, 689-692.
  • Mocanu, P. T., (1981), Sufficient conditions of univalency for complex functions in the class C1, Rev. d’Anal. Nume´er. et de Th´eorie Approx., 10, 75-81.
  • Mocanu, P. T., (2009), Three-cornered hat harmonic functions, Complex Var. Elliptic Equ., 54, 1079
  • Mocanu, P. T., (2011), Injectively conditions in the complex plane, Complex Anal. Oper. Theory, 5, 766.
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

T. Hayami This is me

Publication Date June 1, 2014
Published in Issue Year 2014 Volume: 4 Issue: 1

Cite