ENERGY PRESERVING INTEGRATION OF BI-HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS
Year 2013,
Volume: 3 Issue: 1, 75 - 86, 01.06.2013
Bulent Karasozen
Gorkem Simsek
Abstract
The energy preserving average vector field AVF integrator is applied to evolutionary partial differential equations PDEs in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries KdV equation and for the Ito type coupled KdV equation confirm the long term preservation of the Hamiltonians and Casimir integrals, which is essential in simulating waves and solitons. Dispersive properties of the AVF integrator are investigated for the linearized equations to examine the nonlinear dynamics after discreization.
References
- [1] Ascher, U. M. and McLachlan, R. I., (2004), Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48, 255-269.
- [2] Ascher, U. M., and McLachlan, R.I., (2005) On symplectic and multisymplectic schemes for the KdV equation. J. Sci. Comput., 25, 83-104.
- [3] Aydın, A., and Karas¨ozen, B., (2008), Symplectic and multisymplectic Lobatto methods for the ”good” Boussinesq equation. J. Math. Phys., 49, 083509.
- [4] Aydın, A., and Karas¨ozen, B., (2010), Multisymplectic box schemes for the complex modified Korteweg-de Vries equation. J. Math. Phys., 51, 083511
- [5] Celledoni, E., McLachlan, R. I., McLaren, D. I., Owren, B, Quispel, G. R. W. and Wright, W. M., (2009) Energy-preserving Runge-Kutta methods, M2AN Math. Model. Numer. Anal., 43, 649-645.
- [6] Cohen, D. and Hairer, E., (2011), Linear energy-preserving integrators for poisson systems, BIT Numerical Mathematics, 51, 91-101.
- [7] M. Dahlby, M., and Owren, B., (2011) A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput., 33, 2318–2340.
- [8] Frank,J., Moore, B.E., and Reich, S., (2006), Linear PDEs and numerical methods that preserve a multisymplectic conservation law. SIAM J. Sci. Comput., 28, 260–277.
- [9] Ergen¸c, T. and Karas¨ozen, B., (2006), Poisson integrators for Volterra lattice equations, Applied Numerical Mathematics, 56, 879-887.
- [10] Hairer, E.,(2010), Energy-preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math., 5, 73-84.
- [11] Ito, M., (1980), An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders, J. Phys. Soc. Japan, 49, 771-778.
- [12] Karas¨ozen, B., (2004), Poisson integrators, Math. Comput. Modelling, 40, 1225-1244.
- [13] Liu, Q. P., (2000), Hamiltonian structures for Ito’s equation, Phys. Lett. A, 277, 31-34.
- [14] Magri,F., (1998), A short introduction to Hamiltonian PDEs, Mat. Contemp., 15, 213-230.
- [15] McLachlan, R. I., (2003), Spatial discretization of partial differential equations with integrals, IMA J. Numer. Anal., 23, 645-664.
- [16] Olver, P.,(1995), Applications of Lie Groups to Differential Equations, Springer.
- [17] Olver, P. J. and Rosenau, P., (1996), Tri-Hamiltonian duality between solitons and solutions having compact support, Phys. Rev. E, 53 (3), 1900-1906.
- [18] G. R. W. Quispel and D. I. McLaren. A new class of energy-preserving numerical integration methods. J. Phys. A, 41:045206, 7, 2008.
- [19] Schober, C.M., and Wlodarczyk, T.H., (2008), Dispersive properties of multisymplectic integrators. J. Comput. Phys., 227, 5090–5104.
- [20] Schober, C.M. and Wlodarczyk, T.H., (2009), Dispersion, group velocity, and multisymplectic discretizations. Math. Comput. Simulation, 80, 741–751.
- [21] Xu, Y. and Shu, C.-W., (2006), Local discontinuous Galerkin methods for the Kuramoto- Sivashinsky equations and the Ito-type coupled KdV equations, Comput. Methods Appl. Mech. Engrg., 195, 3430- 3447.
- [22] Zhao, P. F. and Qin, M. Z., (2000), Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation, J. Phys. A, 33, 3613-3626.
Year 2013,
Volume: 3 Issue: 1, 75 - 86, 01.06.2013
Bulent Karasozen
Gorkem Simsek
References
- [1] Ascher, U. M. and McLachlan, R. I., (2004), Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48, 255-269.
- [2] Ascher, U. M., and McLachlan, R.I., (2005) On symplectic and multisymplectic schemes for the KdV equation. J. Sci. Comput., 25, 83-104.
- [3] Aydın, A., and Karas¨ozen, B., (2008), Symplectic and multisymplectic Lobatto methods for the ”good” Boussinesq equation. J. Math. Phys., 49, 083509.
- [4] Aydın, A., and Karas¨ozen, B., (2010), Multisymplectic box schemes for the complex modified Korteweg-de Vries equation. J. Math. Phys., 51, 083511
- [5] Celledoni, E., McLachlan, R. I., McLaren, D. I., Owren, B, Quispel, G. R. W. and Wright, W. M., (2009) Energy-preserving Runge-Kutta methods, M2AN Math. Model. Numer. Anal., 43, 649-645.
- [6] Cohen, D. and Hairer, E., (2011), Linear energy-preserving integrators for poisson systems, BIT Numerical Mathematics, 51, 91-101.
- [7] M. Dahlby, M., and Owren, B., (2011) A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput., 33, 2318–2340.
- [8] Frank,J., Moore, B.E., and Reich, S., (2006), Linear PDEs and numerical methods that preserve a multisymplectic conservation law. SIAM J. Sci. Comput., 28, 260–277.
- [9] Ergen¸c, T. and Karas¨ozen, B., (2006), Poisson integrators for Volterra lattice equations, Applied Numerical Mathematics, 56, 879-887.
- [10] Hairer, E.,(2010), Energy-preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math., 5, 73-84.
- [11] Ito, M., (1980), An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders, J. Phys. Soc. Japan, 49, 771-778.
- [12] Karas¨ozen, B., (2004), Poisson integrators, Math. Comput. Modelling, 40, 1225-1244.
- [13] Liu, Q. P., (2000), Hamiltonian structures for Ito’s equation, Phys. Lett. A, 277, 31-34.
- [14] Magri,F., (1998), A short introduction to Hamiltonian PDEs, Mat. Contemp., 15, 213-230.
- [15] McLachlan, R. I., (2003), Spatial discretization of partial differential equations with integrals, IMA J. Numer. Anal., 23, 645-664.
- [16] Olver, P.,(1995), Applications of Lie Groups to Differential Equations, Springer.
- [17] Olver, P. J. and Rosenau, P., (1996), Tri-Hamiltonian duality between solitons and solutions having compact support, Phys. Rev. E, 53 (3), 1900-1906.
- [18] G. R. W. Quispel and D. I. McLaren. A new class of energy-preserving numerical integration methods. J. Phys. A, 41:045206, 7, 2008.
- [19] Schober, C.M., and Wlodarczyk, T.H., (2008), Dispersive properties of multisymplectic integrators. J. Comput. Phys., 227, 5090–5104.
- [20] Schober, C.M. and Wlodarczyk, T.H., (2009), Dispersion, group velocity, and multisymplectic discretizations. Math. Comput. Simulation, 80, 741–751.
- [21] Xu, Y. and Shu, C.-W., (2006), Local discontinuous Galerkin methods for the Kuramoto- Sivashinsky equations and the Ito-type coupled KdV equations, Comput. Methods Appl. Mech. Engrg., 195, 3430- 3447.
- [22] Zhao, P. F. and Qin, M. Z., (2000), Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation, J. Phys. A, 33, 3613-3626.