BibTex RIS Cite

ON A CLASS OF p x -KIRHHOFF TYPE PROBLEMS WITH ROBIN BOUNDARY CONDITIONS AND INDEFINITE WEIGHTS

Year 2020, Volume: 10 Issue: 2, 0 - 2, 01.03.2020

Abstract

In this paper, we consider a class of p x -Kirhhoff type problems with Robin boundary conditions and indefinite weights. Under some suitable conditions on the nonlinearities, we establish the existence of at least one non-trivial weak solution for the problem by using the minimum principle and the Ekeland variational principle.

References

  • Acerbi E. and Mingione G., (2002), Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164, (3), pp. 213-259.
  • Allaoui M., (2017), Existence results for a class of p(x)-Kirchhoff problems, Studia Sci. Math. Hungar- ica, 54, (3), pp. 316-331.
  • Allaoui M. and Ourraoui A., (2016), Existence results for a class of p(x)-Kirhhoff problem with a singular weight, Mediterr. J. Math., 13, (2), pp. 677-686.
  • Amaziane B., Pankratov L. and A. Piatnitski, (2009), Nonlinear flow through double porosity media in variable exponent Sobolev spaces, Nonlinear Anal. Real World Appl., 10, (4), pp. 2521-2530.
  • Ambrosetti A., Rabinowitz, P. H., (1973), Dual variational methods in critical points theory and applications, J. Funct. Anal., 14, pp. 349-381.
  • Avci M., Cekic B. and Mashiyev R.A., (2011), Existence and multiplicity of the solutions of the p(x)- Kirchhoff type equation via genus theory, Math. Methods Appl. Sci., 34, (14), pp. 1751-1759.
  • Avci M., (2013), Ni-Serrin type equations arising from capillarity phenomena with non-standard growth, Bound. Value Probl., 2013: 55.
  • Bisci G. M., Radulescu V. D., (2015), Applications of local linking to nonlocal Neumann problems, Commun. Contemp. Math., 17, (1), 1450001.
  • Blomgren P., Chan T. F., Mulet P. and Wong C. K., (1997), Total variation image restoration: nu- merical methods and extensions, in Proceedings of the International Conference on Image Processing, 1997, IEEE, 3, pp. 384-387
  • Bouslimi, M. and Kefi, K., (2013), Existence of solution for an indefinite weight quasilinear problem with variable exponent, Complex Var. Elliptic Equa., 58, pp. 1655-1666.
  • Cekic B., Kalinin A.V., Mashiyev R. A. and M. Avci, (2012), Lp(x)(Ω)-estimates of vector fields and some applications to magnetostatics problems, J. Math. Anal. Appl., 389, (2), pp. 838-851.
  • Chung, N. T., (2013), Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing non- linearities, Complex Var. Elliptic Equa., 58(12), pp. 1637-1646.
  • Chung, N. T., (2013), Multiple solutions for a class of p(x)-Kirchhoff type problems with Neumann boundary conditions, Adv. Pure Appl. Math., 4, (2), pp. 165-177.
  • Chung, N. T., (2018), Some remarks on a class of p(x)-Laplacian Robin eigenvalue problems, Mediterr. J. Math., 15, (4): 147.
  • Chipot, M, and Lovat, B., (1997), Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal. (TMA), 30, (7), pp. 4619-4627.
  • Colasuonno, F. and Pucci, P., (2011), Multiplicity of solutions for p(x)-polyharmonic Kirchhoff equa- tions, Nonlinear Anal. (TMA), 74, pp. 5962-5974.
  • Correa, F. J. S. A. and Figueiredo, G. M., (2006), On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Aust. Math. Soc., 74, pp. 263-277.
  • Cruz-Uribe, D. V. and Fiorenza A., (2013), Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer, Basel.
  • Dai, G., (2013), Three solutions for a nonlocal Dirichlet boundary value problem involving the p(x)- Laplacian, Appl. Anal., 92(1), pp. 191-210.
  • Dai, G. and Hao, R., (2009), Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl., 359, pp. 275-284.
  • Deng, S. G., (2009), Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl., 360, pp. 548-560.
  • Diening, L., Harjulehto, P., H¨ast¨o P. and Ru˘zi˘cka M., (2011), Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Vol. 2017, Springer-Verlag, Heidelberg.
  • Ekeland I., (1974), On the variational principle, J. Math. Anal. Appl., 47, pp. 324-353.
  • Ge, B. and Zhou, Q. M., (2017), Multiple solutions for a Robin-type differential inclusion problem involving the p(x)-Laplacian, Math. Meth. Appl. Sci., 40, (18), (2017), pp. 6229-6238.
  • Kefi, K., (2018), On the Robin problem with indefinite weight in Sobolev spaces with variable expo- nents, Zeitschrift f¨ur Analysis und ihre Anwendugen (ZAA), 37, pp. 25-38.
  • Kirchhoff, G., (1883), Mechanik, Teubner, Leipzig, Germany.
  • Kov´aˇcik, O. and R´akosn´ık, J., (1991), On spaces Lp(x)and W1,p(x), Czechoslovak Math. J., 41, pp. 592-618.
  • Ru˘zi˘cka, M., (2000), Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Vol. 1748, Springer-Verlag, Berlin.
  • Wang, L., Xie, K. and Zhang, B., (2018), Existence and multiplicity of solutions for critical Kirchhoff- type p-Laplacian problems, J. Math. Anal. Appl., 458, pp. 361-378.
  • Zhikov. V. V., (1997), Meyer-type estimates for solving the nonlinear Stokes system, Differential Equa., 33, (1), pp. 108-115.
Year 2020, Volume: 10 Issue: 2, 0 - 2, 01.03.2020

Abstract

References

  • Acerbi E. and Mingione G., (2002), Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164, (3), pp. 213-259.
  • Allaoui M., (2017), Existence results for a class of p(x)-Kirchhoff problems, Studia Sci. Math. Hungar- ica, 54, (3), pp. 316-331.
  • Allaoui M. and Ourraoui A., (2016), Existence results for a class of p(x)-Kirhhoff problem with a singular weight, Mediterr. J. Math., 13, (2), pp. 677-686.
  • Amaziane B., Pankratov L. and A. Piatnitski, (2009), Nonlinear flow through double porosity media in variable exponent Sobolev spaces, Nonlinear Anal. Real World Appl., 10, (4), pp. 2521-2530.
  • Ambrosetti A., Rabinowitz, P. H., (1973), Dual variational methods in critical points theory and applications, J. Funct. Anal., 14, pp. 349-381.
  • Avci M., Cekic B. and Mashiyev R.A., (2011), Existence and multiplicity of the solutions of the p(x)- Kirchhoff type equation via genus theory, Math. Methods Appl. Sci., 34, (14), pp. 1751-1759.
  • Avci M., (2013), Ni-Serrin type equations arising from capillarity phenomena with non-standard growth, Bound. Value Probl., 2013: 55.
  • Bisci G. M., Radulescu V. D., (2015), Applications of local linking to nonlocal Neumann problems, Commun. Contemp. Math., 17, (1), 1450001.
  • Blomgren P., Chan T. F., Mulet P. and Wong C. K., (1997), Total variation image restoration: nu- merical methods and extensions, in Proceedings of the International Conference on Image Processing, 1997, IEEE, 3, pp. 384-387
  • Bouslimi, M. and Kefi, K., (2013), Existence of solution for an indefinite weight quasilinear problem with variable exponent, Complex Var. Elliptic Equa., 58, pp. 1655-1666.
  • Cekic B., Kalinin A.V., Mashiyev R. A. and M. Avci, (2012), Lp(x)(Ω)-estimates of vector fields and some applications to magnetostatics problems, J. Math. Anal. Appl., 389, (2), pp. 838-851.
  • Chung, N. T., (2013), Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing non- linearities, Complex Var. Elliptic Equa., 58(12), pp. 1637-1646.
  • Chung, N. T., (2013), Multiple solutions for a class of p(x)-Kirchhoff type problems with Neumann boundary conditions, Adv. Pure Appl. Math., 4, (2), pp. 165-177.
  • Chung, N. T., (2018), Some remarks on a class of p(x)-Laplacian Robin eigenvalue problems, Mediterr. J. Math., 15, (4): 147.
  • Chipot, M, and Lovat, B., (1997), Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal. (TMA), 30, (7), pp. 4619-4627.
  • Colasuonno, F. and Pucci, P., (2011), Multiplicity of solutions for p(x)-polyharmonic Kirchhoff equa- tions, Nonlinear Anal. (TMA), 74, pp. 5962-5974.
  • Correa, F. J. S. A. and Figueiredo, G. M., (2006), On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Aust. Math. Soc., 74, pp. 263-277.
  • Cruz-Uribe, D. V. and Fiorenza A., (2013), Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer, Basel.
  • Dai, G., (2013), Three solutions for a nonlocal Dirichlet boundary value problem involving the p(x)- Laplacian, Appl. Anal., 92(1), pp. 191-210.
  • Dai, G. and Hao, R., (2009), Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl., 359, pp. 275-284.
  • Deng, S. G., (2009), Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl., 360, pp. 548-560.
  • Diening, L., Harjulehto, P., H¨ast¨o P. and Ru˘zi˘cka M., (2011), Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Vol. 2017, Springer-Verlag, Heidelberg.
  • Ekeland I., (1974), On the variational principle, J. Math. Anal. Appl., 47, pp. 324-353.
  • Ge, B. and Zhou, Q. M., (2017), Multiple solutions for a Robin-type differential inclusion problem involving the p(x)-Laplacian, Math. Meth. Appl. Sci., 40, (18), (2017), pp. 6229-6238.
  • Kefi, K., (2018), On the Robin problem with indefinite weight in Sobolev spaces with variable expo- nents, Zeitschrift f¨ur Analysis und ihre Anwendugen (ZAA), 37, pp. 25-38.
  • Kirchhoff, G., (1883), Mechanik, Teubner, Leipzig, Germany.
  • Kov´aˇcik, O. and R´akosn´ık, J., (1991), On spaces Lp(x)and W1,p(x), Czechoslovak Math. J., 41, pp. 592-618.
  • Ru˘zi˘cka, M., (2000), Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Vol. 1748, Springer-Verlag, Berlin.
  • Wang, L., Xie, K. and Zhang, B., (2018), Existence and multiplicity of solutions for critical Kirchhoff- type p-Laplacian problems, J. Math. Anal. Appl., 458, pp. 361-378.
  • Zhikov. V. V., (1997), Meyer-type estimates for solving the nonlinear Stokes system, Differential Equa., 33, (1), pp. 108-115.
There are 30 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

N. T. Chung This is me

Publication Date March 1, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite