BibTex RIS Cite

SOME FIXED POINT RESULTS IN THE GENERALIZED CONVEX METRIC SPACES

Year 2020, Volume: 10 Issue: 1, 11 - 23, 01.01.2020

Abstract

In this study, we introduce a new three step iteration process and show that the iteration process converges to the unique xed point by two theorems under different conditions of contractive mappings on the generalized G- convex metric spaces. Also, we investigate data dependence result for this iterative process in the generalized G- convex metric spaces.

References

  • Takahashi, W., A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (1970), 142–149.
  • Tian, Y-X., Convergence of an Ishikawa type iterative scheme for asymptotically quasi-nonexpansive mappings, Comput. Math. Appl. 49 (2005) 1905–1912.
  • Mustafa, Z., Sims, B., “Some remarks concerning D-metric spaces,” in International Conference on Fixed Point Theory and Applications, pp. 189–198, Yokohama, Yokohama, Japan, 2004.9.
  • Mustafa, Z., Obiedat, H., Awawdeh, F., Some of fixed point theorem for mapping on complete G- metric spaces, Fixed Point Theory Appl., 2008(2008), Article ID 189870,page 12.
  • Mustafa, Z., A new structure for generalized metric spaces with applications to FIxed point theory, Ph.D. thesis, University of Newcastle, Newcastle, UK, 2005.
  • Mustafa, Z., Shatanawi, W. and Bataineh, M., Fixed point theorems on uncomplete G-metric spaces, J. Math. Stat. 4(4)(2008), 196-201.
  • Mustafa, Z., Shatanawi, W., Bataineh, M., Existence of fixed point result in G-metric spaces, Int. J. Math. Math. Sci. 2009(2009), page 10, Article ID 283028.
  • Mustafa, Z. and Sims, B., Fixed point theorems for contractive mappings in complete G-metric space, Fixed Point Theory Appl. 2009(2009), page 10, Article ID 917175.
  • Mustafa, Z. and Sims, B., “A new approach to generalized metric spaces,” Journal of Nonlinear and Convex Analysis, vol. 7, no. 2, pp. 289–297, 2006.
  • Rafik, A., Fixed Points of Ciric Quasi-contractive Operators in Generalized Convex Metric Spaces,General Mathematics Vol. 14, No. 3 (2006), 79–90.
  • Dogan, K., Karakaya, V., On the Convergence and Stability Results for a New General Iterative Process. The Scientific World Journal, 2014.
  • Karakaya, V., Dogan, K., Gursoy, F., Erturk, M., Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces. In Abstract and Applied Analysis (Vol. 2013), 2013.
  • Gursoy, F. and Karakaya, V., A Picard-S hybrid type iteration method for solving a differential equation with retarded argument. arXiv preprint arXiv:1403.2546, 2014.
  • Mann, W. R., Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
  • Ishikawa, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147-150.
  • Noor, M. A., New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000) 217-229.
  • Weng, X., Fixed point iteration for local strictly pseudo-contractivemapping, Proceedings of the Amer- ican Mathematical Society, 113(1991), 727-731.
  • Gahler, S., “2-metrische Raume und ihre topologische Struktur,” Mathematische Nachrichten, vol. 26, pp. 115–148, 1963.
  • Gahler, S., “Zur geometric 2-metriche raume,” Revue Roumaine de Math´ematiques Pures et Ap- pliquees, vol. 40, pp. 664–669, 1966.
  • Ha, K.S., Cho, Y.J., White, A., “Strictly convex and strictly 2-convex 2-normed spaces,”Mathematica Japonica, vol. 33, no. 3, pp. 375–384, 1988.
  • Dhage, B. C., “Generalized metric space and mapping with fixed point,” Bulletin of the Calcutta Mathematical Society, vol. 84, pp. 329–336, 1992. 5.
  • Dhage, B. C., “Generalized metric spaces and topological structure.I,”Analele Stiintificeale Universi- tatii Al. I. Cuza din Iasi. Serie Noua. Matematica, vol. 46, no. 1, pp. 3–24, 2000. 6.
  • Dhage, B. C., “On generalized metric spaces and topological structure. II,” Pure and Applied Math- ematika Sciences, vol. 40, no. 1-2, pp. 37–41, 1994. 7.
  • Dhage, B. C., “On continuity of mappings in D-metric spaces,” Bulletin of the Calcutta Mathematical Society, vol. 86, no. 6, pp. 503–508, 1994. 8.
  • Reich, S., “Some remarks concerning contraction mappings,” Canadian Mathematical Bulletin, vol. 14, pp. 121–124, 1971. 11
  • Bianchini, R. M. T., “Su un problema di S. Reich riguardante la teoria dei punti fissi,” Bollettino dell’Unione Matematica Italiana, vol. 5, no. 4, pp. 103–108, 1972. 12.
  • ´Ciric, Lj. B., “A generalization of Banach’s contraction principle,” Proceedings of the American Mathematical Society, vol. 45, pp. 267–273, 1974. 13.
  • Chatterjea, S. K., “Fixed-point theorems,” Doklady Bolgarsko Akademii Nauk. Comptes Rendus de l Academie Bulgare des Sciences, vol. 25, pp. 727–730, 1972.
  • Thangavelu P., Shyamala Malini S., Jeyanthi, P., Convexity in D-Metric Spaces and its applications to fixed point theorems, International Journal of Statistika and Mathematika, Vol. 2, Issue 3, (2012), 05-12.
  • Modi, G., Bhatt, B., ”Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space”, International Journal Of Mathematics And Statistics Invention, Volume 2 Issue 11, 2014, pp 34-38.
  • S oltuz SM, Grosan T., Data dependence for Ishikawa iteration when dealing with contractive like operators., Fixed Point Theory A., 2008, 2008, 1-7.
Year 2020, Volume: 10 Issue: 1, 11 - 23, 01.01.2020

Abstract

References

  • Takahashi, W., A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (1970), 142–149.
  • Tian, Y-X., Convergence of an Ishikawa type iterative scheme for asymptotically quasi-nonexpansive mappings, Comput. Math. Appl. 49 (2005) 1905–1912.
  • Mustafa, Z., Sims, B., “Some remarks concerning D-metric spaces,” in International Conference on Fixed Point Theory and Applications, pp. 189–198, Yokohama, Yokohama, Japan, 2004.9.
  • Mustafa, Z., Obiedat, H., Awawdeh, F., Some of fixed point theorem for mapping on complete G- metric spaces, Fixed Point Theory Appl., 2008(2008), Article ID 189870,page 12.
  • Mustafa, Z., A new structure for generalized metric spaces with applications to FIxed point theory, Ph.D. thesis, University of Newcastle, Newcastle, UK, 2005.
  • Mustafa, Z., Shatanawi, W. and Bataineh, M., Fixed point theorems on uncomplete G-metric spaces, J. Math. Stat. 4(4)(2008), 196-201.
  • Mustafa, Z., Shatanawi, W., Bataineh, M., Existence of fixed point result in G-metric spaces, Int. J. Math. Math. Sci. 2009(2009), page 10, Article ID 283028.
  • Mustafa, Z. and Sims, B., Fixed point theorems for contractive mappings in complete G-metric space, Fixed Point Theory Appl. 2009(2009), page 10, Article ID 917175.
  • Mustafa, Z. and Sims, B., “A new approach to generalized metric spaces,” Journal of Nonlinear and Convex Analysis, vol. 7, no. 2, pp. 289–297, 2006.
  • Rafik, A., Fixed Points of Ciric Quasi-contractive Operators in Generalized Convex Metric Spaces,General Mathematics Vol. 14, No. 3 (2006), 79–90.
  • Dogan, K., Karakaya, V., On the Convergence and Stability Results for a New General Iterative Process. The Scientific World Journal, 2014.
  • Karakaya, V., Dogan, K., Gursoy, F., Erturk, M., Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces. In Abstract and Applied Analysis (Vol. 2013), 2013.
  • Gursoy, F. and Karakaya, V., A Picard-S hybrid type iteration method for solving a differential equation with retarded argument. arXiv preprint arXiv:1403.2546, 2014.
  • Mann, W. R., Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
  • Ishikawa, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147-150.
  • Noor, M. A., New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000) 217-229.
  • Weng, X., Fixed point iteration for local strictly pseudo-contractivemapping, Proceedings of the Amer- ican Mathematical Society, 113(1991), 727-731.
  • Gahler, S., “2-metrische Raume und ihre topologische Struktur,” Mathematische Nachrichten, vol. 26, pp. 115–148, 1963.
  • Gahler, S., “Zur geometric 2-metriche raume,” Revue Roumaine de Math´ematiques Pures et Ap- pliquees, vol. 40, pp. 664–669, 1966.
  • Ha, K.S., Cho, Y.J., White, A., “Strictly convex and strictly 2-convex 2-normed spaces,”Mathematica Japonica, vol. 33, no. 3, pp. 375–384, 1988.
  • Dhage, B. C., “Generalized metric space and mapping with fixed point,” Bulletin of the Calcutta Mathematical Society, vol. 84, pp. 329–336, 1992. 5.
  • Dhage, B. C., “Generalized metric spaces and topological structure.I,”Analele Stiintificeale Universi- tatii Al. I. Cuza din Iasi. Serie Noua. Matematica, vol. 46, no. 1, pp. 3–24, 2000. 6.
  • Dhage, B. C., “On generalized metric spaces and topological structure. II,” Pure and Applied Math- ematika Sciences, vol. 40, no. 1-2, pp. 37–41, 1994. 7.
  • Dhage, B. C., “On continuity of mappings in D-metric spaces,” Bulletin of the Calcutta Mathematical Society, vol. 86, no. 6, pp. 503–508, 1994. 8.
  • Reich, S., “Some remarks concerning contraction mappings,” Canadian Mathematical Bulletin, vol. 14, pp. 121–124, 1971. 11
  • Bianchini, R. M. T., “Su un problema di S. Reich riguardante la teoria dei punti fissi,” Bollettino dell’Unione Matematica Italiana, vol. 5, no. 4, pp. 103–108, 1972. 12.
  • ´Ciric, Lj. B., “A generalization of Banach’s contraction principle,” Proceedings of the American Mathematical Society, vol. 45, pp. 267–273, 1974. 13.
  • Chatterjea, S. K., “Fixed-point theorems,” Doklady Bolgarsko Akademii Nauk. Comptes Rendus de l Academie Bulgare des Sciences, vol. 25, pp. 727–730, 1972.
  • Thangavelu P., Shyamala Malini S., Jeyanthi, P., Convexity in D-Metric Spaces and its applications to fixed point theorems, International Journal of Statistika and Mathematika, Vol. 2, Issue 3, (2012), 05-12.
  • Modi, G., Bhatt, B., ”Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space”, International Journal Of Mathematics And Statistics Invention, Volume 2 Issue 11, 2014, pp 34-38.
  • S oltuz SM, Grosan T., Data dependence for Ishikawa iteration when dealing with contractive like operators., Fixed Point Theory A., 2008, 2008, 1-7.
There are 31 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

K. Dogan This is me

F. Gursoy This is me

V. Karakaya This is me

Publication Date January 1, 2020
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite