BibTex RIS Cite

GLOBAL ATTRACTOR OF THE HYPERBOLIC RELAXATION OF THE SWIFT-HOHENBERG EQUATION IN Rn

Year 2020, Volume: 10 Issue: 1, 161 - 172, 01.01.2020

Abstract

In this paper, the hyperbolic modi cation of the Swift-Hohenberg equation in Rn is dealt with. The existence of the global attractor in H2 Rn L2 Rn is proved. Also, the smoothness and the nite dimensionality of the global attractor are established.

References

  • Babin,A.V. and Vishik,M.I., (1992), Attractors for evolution equations, North-Holland, Amsterdam.
  • Cazenave,T. and Haraux,A., (1998), An introduction to semilinear evolution equations, Oxford Uni- versity Press, New York,.
  • Chueshov,I. and Lasiecka,I., (2010), Von Karman Evolution Equations, Springer, Berlin.
  • Danilov,D., Galenko,P. and Lebedev,V., (2009) Phase-field-crystal and Swift-Hohenberg equations with fast dynamics, Phys. Rev. E, 79, pp.1-15.
  • Elder,K.R., Grant,M. and Vi˜nals,J., (1992), Dynamic scaling and quasi-ordered states in the 2- dimensional Swift-Hohenberg equation, Phys. Rev. A, 46, pp.7618–7629.
  • Geraci,A. and Longhi,S., (1996), Swift-Hohenberg equation for optical parametric oscillators, Phys. Rev. A, 54, pp.4581–4584.
  • Gierer,A. and Meinhardt,H., (1972), A theory of biological pattern formation, Kybernetik, 12(1), pp.30–39.
  • Giorgini,A., (2016), On the Swift-Hohenberg equation with slow and fast dynamics: Well-posedness and long-time behavior, Comm Pure Appl Anal., 15, pp.219–241.
  • Hiscock,T. and Megason,S., (2015), Orientation of Turing-like patterns by morphogen gradients and tissue anisotrophies, Cell Syst, 1, pp.408–416.
  • Khanmamedov,A.Kh., (2006), Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318, pp.92–101.
  • Khanmamedov,A.Kh., (2006), Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J.Differential Equations, 225, pp.528–548.
  • Khanmamedov,A.Kh., (2010), Global attractors for 2-D wave equations with displacement dependent damping, Math. Methods Appl. Sci., 33, pp.177–187.
  • Lega,J., Moloney,J. and Newell,A., (1994), Swift-Hohenberg equation for lasers, Phys. Rev. Lett., 73, pp.2978–2981.
  • Peletier, L.A and Rottsch¨afer,V., (2003), Large time behaviour of solutions of the Swift Hohenberg equation, C. R. Acad. Sci. Paris, 1336, pp.225 230.
  • Peletier, L.A and Rottsch¨afer,V., (2004), Pattern selection of solutions of the Swift Hohenberg equa- tion, Physica D, 194, pp.95 126.
  • Peletier, L.A. and Williams,J.F., (2007), Some canonical bifurcations in the Swift Hohenberg Equation, SIADS, 6(1), pp.208 235.
  • Polat,M.,(2009), Global attractor for a modified Swift Hohenberg equation, Comp. and Math. with Appl., 57, pp.62–66.
  • Pomeau,Y. and Manneville,P., (1980), Wavelength selection in cellular flows, Phys Lett A, 75, pp.296–
  • Song,L.Y., Zhang,Y.D. and Ma,T., (2010), Global attractor of a modi ed Swift-Hohenberg equation in Hk spaces, Nonlinear Anal., 72, pp.183–191.
  • Swift,J.B. and Hohenberg,P.C., (1977), Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15, pp.319–328.
Year 2020, Volume: 10 Issue: 1, 161 - 172, 01.01.2020

Abstract

References

  • Babin,A.V. and Vishik,M.I., (1992), Attractors for evolution equations, North-Holland, Amsterdam.
  • Cazenave,T. and Haraux,A., (1998), An introduction to semilinear evolution equations, Oxford Uni- versity Press, New York,.
  • Chueshov,I. and Lasiecka,I., (2010), Von Karman Evolution Equations, Springer, Berlin.
  • Danilov,D., Galenko,P. and Lebedev,V., (2009) Phase-field-crystal and Swift-Hohenberg equations with fast dynamics, Phys. Rev. E, 79, pp.1-15.
  • Elder,K.R., Grant,M. and Vi˜nals,J., (1992), Dynamic scaling and quasi-ordered states in the 2- dimensional Swift-Hohenberg equation, Phys. Rev. A, 46, pp.7618–7629.
  • Geraci,A. and Longhi,S., (1996), Swift-Hohenberg equation for optical parametric oscillators, Phys. Rev. A, 54, pp.4581–4584.
  • Gierer,A. and Meinhardt,H., (1972), A theory of biological pattern formation, Kybernetik, 12(1), pp.30–39.
  • Giorgini,A., (2016), On the Swift-Hohenberg equation with slow and fast dynamics: Well-posedness and long-time behavior, Comm Pure Appl Anal., 15, pp.219–241.
  • Hiscock,T. and Megason,S., (2015), Orientation of Turing-like patterns by morphogen gradients and tissue anisotrophies, Cell Syst, 1, pp.408–416.
  • Khanmamedov,A.Kh., (2006), Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318, pp.92–101.
  • Khanmamedov,A.Kh., (2006), Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J.Differential Equations, 225, pp.528–548.
  • Khanmamedov,A.Kh., (2010), Global attractors for 2-D wave equations with displacement dependent damping, Math. Methods Appl. Sci., 33, pp.177–187.
  • Lega,J., Moloney,J. and Newell,A., (1994), Swift-Hohenberg equation for lasers, Phys. Rev. Lett., 73, pp.2978–2981.
  • Peletier, L.A and Rottsch¨afer,V., (2003), Large time behaviour of solutions of the Swift Hohenberg equation, C. R. Acad. Sci. Paris, 1336, pp.225 230.
  • Peletier, L.A and Rottsch¨afer,V., (2004), Pattern selection of solutions of the Swift Hohenberg equa- tion, Physica D, 194, pp.95 126.
  • Peletier, L.A. and Williams,J.F., (2007), Some canonical bifurcations in the Swift Hohenberg Equation, SIADS, 6(1), pp.208 235.
  • Polat,M.,(2009), Global attractor for a modified Swift Hohenberg equation, Comp. and Math. with Appl., 57, pp.62–66.
  • Pomeau,Y. and Manneville,P., (1980), Wavelength selection in cellular flows, Phys Lett A, 75, pp.296–
  • Song,L.Y., Zhang,Y.D. and Ma,T., (2010), Global attractor of a modi ed Swift-Hohenberg equation in Hk spaces, Nonlinear Anal., 72, pp.183–191.
  • Swift,J.B. and Hohenberg,P.C., (1977), Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15, pp.319–328.
There are 20 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

S. Yayla This is me

Publication Date January 1, 2020
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite