BibTex RIS Cite

LINEAR COMBINATIONS OF q-STARLIKE FUNCTIONS OF ORDER ALPHA

Year 2020, Volume: 10 Issue: 1, 201 - 207, 01.01.2020

Abstract

In this paper, we introduced a new concept of bounded radius rotation to de ne the class of q-starlike functions of order using the q-derivative, some geometric properties of linear combination of such functions are studied.

References

  • Agrawal, S. and Sahoo, S. K., (2014). Geometric properties of basic hypergeometric functions, Difference Equ. Appl., 20(11), pp. 1502-1522.
  • Agrawal, S. and Sahoo, S. K., (2017). A generalization of starlike functions of order alpha, Hokkaido Math. J., 46(1), pp. 15-27.
  • Goodman, A. W., (1983). Univalent Functions, Vol I. Washington, New Jersey: Polygonal Publishing House.
  • Ismail, M. E. H., Merkes, E., Styer, D. (1990). A generalization of starlike functions, Complex Variables, 14, pp. 77-84.
  • Jackson, F. H., (1909). On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46, pp. 253-281.
  • Noor, K. I. and Noor, M. A., (2017). Linear combinations of generalized q-starlike functions, Appl. Math. Infor. Sci., 11(3), pp. 745-748.
  • Noor, K. I., and Riaz, S., (2017). Generalized q-starlike functions, Studia Scientiarum Mathematicarum Hungarica, 54(4) , pp. 509-522.
  • Raghavendar, K. and Swaminathan, A., (2012). Close-to-convexity of basic hypergeometric functions using their Taylor coefficients, J. Math. Appl., 35 , pp. 111-125.
  • Robertson, M. I., (1936). On the theory of univalent functions, Annals Math., pp. 374-408.
  • Sahoo, S. K. and Sharma, N. L., (2015). On a generalization of close-to-convex functions, Ann. Polon.Math., 113(1), pp. 93-108.
Year 2020, Volume: 10 Issue: 1, 201 - 207, 01.01.2020

Abstract

References

  • Agrawal, S. and Sahoo, S. K., (2014). Geometric properties of basic hypergeometric functions, Difference Equ. Appl., 20(11), pp. 1502-1522.
  • Agrawal, S. and Sahoo, S. K., (2017). A generalization of starlike functions of order alpha, Hokkaido Math. J., 46(1), pp. 15-27.
  • Goodman, A. W., (1983). Univalent Functions, Vol I. Washington, New Jersey: Polygonal Publishing House.
  • Ismail, M. E. H., Merkes, E., Styer, D. (1990). A generalization of starlike functions, Complex Variables, 14, pp. 77-84.
  • Jackson, F. H., (1909). On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46, pp. 253-281.
  • Noor, K. I. and Noor, M. A., (2017). Linear combinations of generalized q-starlike functions, Appl. Math. Infor. Sci., 11(3), pp. 745-748.
  • Noor, K. I., and Riaz, S., (2017). Generalized q-starlike functions, Studia Scientiarum Mathematicarum Hungarica, 54(4) , pp. 509-522.
  • Raghavendar, K. and Swaminathan, A., (2012). Close-to-convexity of basic hypergeometric functions using their Taylor coefficients, J. Math. Appl., 35 , pp. 111-125.
  • Robertson, M. I., (1936). On the theory of univalent functions, Annals Math., pp. 374-408.
  • Sahoo, S. K. and Sharma, N. L., (2015). On a generalization of close-to-convex functions, Ann. Polon.Math., 113(1), pp. 93-108.
There are 10 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

H. Shamsan This is me

R. S. A. Qahtan This is me

S. Latha This is me

Publication Date January 1, 2020
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite