Research Article
BibTex RIS Cite

Year 2025, Volume: 15 Issue: 9, 2406 - 2420, 01.09.2025

Abstract

References

  • Reference1 Abad, M., Cordero, A. and Torregrosa, J. R., (2014), A family of seventh order schemes for solving nonlinear systems, Bull. Math. Soc. Sci. Math. Roumanie Tome., (105)57, pp. 133-145.
  • Reference2 AL-Obaidi, R. H. and Darvishi, M. T., (2022), A comparative study on qualification criteria of nonlinear solvers with introducing some new ones, J. Mathematics., 2022.
  • Reference3 Behl, R. and Arora, H., (2022), A novel scheme having seventh-order convergence for nonlinear systems, J. Comput. Appl. Math., 404.
  • Reference4 Behl, R., Argyros, I. K., Mallawi, F. O. and Alharbi, S. K., (2023), Extending the applicability of highly efficient iterative methods for nonlinear equations and their applications, Mathematics, 125.
  • Reference5 Capdevila, R. R., Cordero, A., and Torregrosa, J. R., (2019), A new three-step class of iterative methods for solving nonlinear systems, Mathematics., 7.
  • Reference6 Cordero, A., G´omez, E. and Torregrosa, J. R., (2017), Efficient high-order iterative methods for solving nonlinear systems and their application on heat conduction problems, Complexity., 2017.
  • Reference7 Crnahan, B., Luther, H. A. and Wilkes, J. O., (1969), Applied Numerical Methods, Wiley, New York.
  • Reference8 Hentenryck, P. V., McAllester, D. and Kapur, D., (1997), Solving polynomial systems using a branch and prune approach, SIAM J. Numer. Anal., 34, pp. 797-827.
  • Reference9 King, M. R. and Mody, N. A., (2010), Numerical and statistical methods for bioengineering: Applications in matlab, Cambridge University Press, New York.
  • Reference10 Kung, H. T. and Traub, J. F., (1974), Optimal order of one-point and multipoint iteration, J. ACM., 21, pp. 643-651.
  • Reference11 Morgan, A. P., (1987), Computing all solutions to polynomial systems using homotopy continuation, Appl. Math. Comput., 24, pp. 115-138.
  • Reference12 Morgan, A. P., (1987), Solving polynomial systems using continuation for scientific and engineering problems, Englewood Cliffs, NJ: Prentice-Hall.
  • Reference13 Meintjes, K. and Morgan, A. P., (1990), Chemical equilibrium systems as numerical test problems, ACM Trans. Math. Softw., 16, pp. 143-151.
  • Reference14 Narang, M., Bhatia, S. and Kanwar, V., (2017), New efficient derivative free family of seventh-order methods for solving systems of nonlinear equations, Numer. Algorithms., 76, pp. 283-307.
  • Reference15 Pavarino, L. F., Scacchi, S. and Zampini, S., (2015), Newton Krylov-BDDC solvers for nonlinear cardiac mechanics, Comput. Methods Appl. Mech. Engrg., 295, pp. 562-580.
  • Reference16 Qureshi, S., Ramos, H. and Soomro, A. K., (2021), A new nonlinear ninth-order root-finding method with error analysis and basins of attraction, Mathematics., 9.
  • Reference17 Sharma, J. R. and Arora, H., (2014), A novel derivative free algorithm with seventh order convergence for solving systems of nonlinear equations, Numer. Algorithms., 67, pp. 917-933.
  • Reference18 Sharma, J. R., Argyros, I. K. and Singh, H., (2022), Semilocal convergence analys is of an efficient Steffensentype fourth order method, J. Anal., 31, pp. 1573-1586.
  • Reference19 Soleymani, F., Khattri, S. K. and Vanania, S. K., (2012), Two new classes of optimal Jarratt-type fourth-order methods, Appl. Math. Lett., 25, pp. 847-853.
  • Reference20 Soleymani, F., Sharifi, M., Shateyi, S. and Haghani, F. K., (2014), Iterative methods for nonlinear equations or systems and their applications J. Appl. Math., 2014.
  • Reference21 Vrscay, E. R. and Gilbert, W. J., (1998), Extraneous fixed points basin boundaries and chaotic dynamics for Schroder and Konig rational iteration functions, Numer. Math., pp. 52, 1-16.
  • Reference22 Verschelde, J., Verlinden, P. and Cools, R., (1994), Homotopies exploiting Newton polytopes for solving sparse polynomial systems, SIAM J. Numer. Anal., 31, pp. 915-930.
  • Reference23 Wang, X. and Zhang, T., (2013), A family of Steffensen type methods with seventh-order convergence, Numer. Algorithms., 62, pp. 429-444.
  • Reference24 Wang, X., Zhang, T., Qian, W. and Teng, M., (2015), Seventh-order derivative-free iterative method for solving nonlinear systems, Numer. Algorithms., 70, pp. 545-558.

AN EFFICIENT EIGHTH ORDER FAMILY OF ITERATIVE METHOD FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS

Year 2025, Volume: 15 Issue: 9, 2406 - 2420, 01.09.2025

Abstract

In this paper, we analyse the underlying computational cost as well as applicability of the new iterative methods for real-life problems and illustrate that the new schemes produce aproximations of greater numerical accuracy for solving nonlinear systems. Basins of attraction are also given for some test problems to study the convergence regions.

References

  • Reference1 Abad, M., Cordero, A. and Torregrosa, J. R., (2014), A family of seventh order schemes for solving nonlinear systems, Bull. Math. Soc. Sci. Math. Roumanie Tome., (105)57, pp. 133-145.
  • Reference2 AL-Obaidi, R. H. and Darvishi, M. T., (2022), A comparative study on qualification criteria of nonlinear solvers with introducing some new ones, J. Mathematics., 2022.
  • Reference3 Behl, R. and Arora, H., (2022), A novel scheme having seventh-order convergence for nonlinear systems, J. Comput. Appl. Math., 404.
  • Reference4 Behl, R., Argyros, I. K., Mallawi, F. O. and Alharbi, S. K., (2023), Extending the applicability of highly efficient iterative methods for nonlinear equations and their applications, Mathematics, 125.
  • Reference5 Capdevila, R. R., Cordero, A., and Torregrosa, J. R., (2019), A new three-step class of iterative methods for solving nonlinear systems, Mathematics., 7.
  • Reference6 Cordero, A., G´omez, E. and Torregrosa, J. R., (2017), Efficient high-order iterative methods for solving nonlinear systems and their application on heat conduction problems, Complexity., 2017.
  • Reference7 Crnahan, B., Luther, H. A. and Wilkes, J. O., (1969), Applied Numerical Methods, Wiley, New York.
  • Reference8 Hentenryck, P. V., McAllester, D. and Kapur, D., (1997), Solving polynomial systems using a branch and prune approach, SIAM J. Numer. Anal., 34, pp. 797-827.
  • Reference9 King, M. R. and Mody, N. A., (2010), Numerical and statistical methods for bioengineering: Applications in matlab, Cambridge University Press, New York.
  • Reference10 Kung, H. T. and Traub, J. F., (1974), Optimal order of one-point and multipoint iteration, J. ACM., 21, pp. 643-651.
  • Reference11 Morgan, A. P., (1987), Computing all solutions to polynomial systems using homotopy continuation, Appl. Math. Comput., 24, pp. 115-138.
  • Reference12 Morgan, A. P., (1987), Solving polynomial systems using continuation for scientific and engineering problems, Englewood Cliffs, NJ: Prentice-Hall.
  • Reference13 Meintjes, K. and Morgan, A. P., (1990), Chemical equilibrium systems as numerical test problems, ACM Trans. Math. Softw., 16, pp. 143-151.
  • Reference14 Narang, M., Bhatia, S. and Kanwar, V., (2017), New efficient derivative free family of seventh-order methods for solving systems of nonlinear equations, Numer. Algorithms., 76, pp. 283-307.
  • Reference15 Pavarino, L. F., Scacchi, S. and Zampini, S., (2015), Newton Krylov-BDDC solvers for nonlinear cardiac mechanics, Comput. Methods Appl. Mech. Engrg., 295, pp. 562-580.
  • Reference16 Qureshi, S., Ramos, H. and Soomro, A. K., (2021), A new nonlinear ninth-order root-finding method with error analysis and basins of attraction, Mathematics., 9.
  • Reference17 Sharma, J. R. and Arora, H., (2014), A novel derivative free algorithm with seventh order convergence for solving systems of nonlinear equations, Numer. Algorithms., 67, pp. 917-933.
  • Reference18 Sharma, J. R., Argyros, I. K. and Singh, H., (2022), Semilocal convergence analys is of an efficient Steffensentype fourth order method, J. Anal., 31, pp. 1573-1586.
  • Reference19 Soleymani, F., Khattri, S. K. and Vanania, S. K., (2012), Two new classes of optimal Jarratt-type fourth-order methods, Appl. Math. Lett., 25, pp. 847-853.
  • Reference20 Soleymani, F., Sharifi, M., Shateyi, S. and Haghani, F. K., (2014), Iterative methods for nonlinear equations or systems and their applications J. Appl. Math., 2014.
  • Reference21 Vrscay, E. R. and Gilbert, W. J., (1998), Extraneous fixed points basin boundaries and chaotic dynamics for Schroder and Konig rational iteration functions, Numer. Math., pp. 52, 1-16.
  • Reference22 Verschelde, J., Verlinden, P. and Cools, R., (1994), Homotopies exploiting Newton polytopes for solving sparse polynomial systems, SIAM J. Numer. Anal., 31, pp. 915-930.
  • Reference23 Wang, X. and Zhang, T., (2013), A family of Steffensen type methods with seventh-order convergence, Numer. Algorithms., 62, pp. 429-444.
  • Reference24 Wang, X., Zhang, T., Qian, W. and Teng, M., (2015), Seventh-order derivative-free iterative method for solving nonlinear systems, Numer. Algorithms., 70, pp. 545-558.
There are 24 citations in total.

Details

Primary Language English
Subjects Numerical Analysis
Journal Section Research Articles
Authors

Saima Yaseen This is me 0000-0002-8667-8343

Fiza Zafar This is me 0000-0003-0552-2783

Publication Date September 1, 2025
Submission Date July 26, 2024
Acceptance Date December 31, 2024
Published in Issue Year 2025 Volume: 15 Issue: 9

Cite