INTRODUCING A NOVEL SUBCLASS OF HARMONIC FUNCTIONS WITH CLOSE-TO-CONVEX PROPERTIES
Year 2025,
Volume: 15 Issue: 9, 2181 - 2191, 01.09.2025
Serkan Çakmak
,
Sibel Yalcın
Abstract
In this paper, we introduce a new subclass of close-to-convex harmonic functions. We present a sufficient coefficient condition for a function to be a member of this class. Furthermore, we establish a distortion theorem. These results lay the groundwork for extending the findings to function classes involving higher-order derivatives.
References
-
[1] Clunie, J., Sheil-Small, T., (1984), Harmonic univalent functions, Annales Fennici Mathematici, 9(1), 3-25. DOI: https://doi.org/10.5186/aasfm.1984.0905.
-
[2] Kowalczyk, J., Le´s-Bomba, E., (2010), On a subclass of close-to-convex functions, Applied Mathematics Letters, 23(10), 1147-1151. DOI: https://doi.org/10.1016/j.aml.2010.03.004.
-
[3] Owa, S., Nunokawa, M., Saitoh, H., Srivastava, H. M., (2002), Close-to-convexity, starlikeness, and convexity of certain analytic functions, Applied Mathematics Letters, 15(1), 63-69. DOI: https://
doi.org/10.1016/S0893-9659(01)00094-5.
-
[4] Gao, C., Zhou, S., (2005), On a class of analytic functions related to the starlike functions, Kyungpook Mathematical Journal, 45(1), 123-130.
-
[5] Şeker, B., (2011), On certain new subclass of close-to-convex functions, Applied Mathematics and Computation, 218(3), 1041-1045. DOI: https://doi.org/10.1016/j.amc.2011.03.018.
-
[6] Ponnusamy, S., Yamamoto, H., Yanagihara, H., (2013), Variability regions for certain families of harmonic univalent mappings, Complex Variables and Elliptic Equations, 58(1), 23-34. DOI: https:
//doi.org/10.1080/17476933.2010.551200.
-
[7] Li, L., Ponnusamy, S., (2013), Disk of convexity of sections of univalent harmonic functions, Journal
of Mathematical Analysis and Applications, 408, 589-596. DOI: https://doi.org/10.1016/j.jmaa.2013.06.021.
-
[8] Li, L., Ponnusamy, S., (2013), Injectivity of sections of univalent harmonic mappings, Nonlinear Analysis, 89, 276-283. DOI: https://doi.org/10.1016/j.na.2013.05.016.
-
[9] Ghosh, N., Vasudevarao, A., (2019), On a subclass of harmonic close-to-convex mappings, Monatshefte für Mathematik, 188, 247-267. DOI: https://doi.org/10.1007/s00605-017-1138-7.
-
[10] Rajbala, Prajapat, J. K., (2020), Certain geometric properties of close-to-convex harmonic mappings, Asian-European Journal of Mathematics. DOI: https://doi.org/10.1142/S1793557121501023.
-
[11] Çakmak, S., Yaşar, E., Yalçın, Y., (2024), Some basic properties of a subclass of close-to-convex harmonic mappings, TWMS Journal of Pure and Applied Mathematics, 15(2), 163-173. DOI: https:
//doi.org/10.30546/2219-1259.15.2.2024.01163.
-
[12] Yaşar, E., Yalçın, S., (2021), Close-to-convexity of a class of harmonic mappings defined by a third order differential inequality, Turkish Journal of Mathematics, 45(2), 678-694. DOI: https://doi.org/10.3906/mat-2004-50.
-
[13] Bshouty, D., Lyzzaik, A., (2011), Close-to-convexity criteria for planar harmonic mappings, Complex Analysis and Operator Theory, 5, 767-774. DOI: https://doi.org/10.1007/s11785-010-0056-7.
-
[14] Kalaj, D., Ponnusamy, S., Vuorinen, M., (2014), Radius of close-to-convexity and full starlikeness of harmonic mappings, Complex Variables and Elliptic Equations, 59, 539-552. DOI: https://doi.org/10.1080/17476933.2012.759565.
-
[15] Ghosh, N., Vasudevarao, A., (2018), Some basic properties of certain subclass of harmonic univalent functions, Complex Variables and Elliptic Equations, 63, 1687-1703. DOI: https://doi.org/10.1080/17476933.2017.1403426.
-
[16] Ghosh, N., Vasudevarao, A., (2019), The radii of fully starlikeness and fully convexity of a harmonic operator, Monatshefte für Mathematik, 188, 653-666. DOI: https://doi.org/10.1007/
s00605-018-1163-1.
-
[17] Ghosh, N., Vasudevarao, A., (2020), On some subclass of harmonic mappings, Bulletin of the Australian Mathematical Society, 101, 130-140. DOI: https://doi.org/10.1017/S0004972719000698.
-
[18] Ali, M. F., Allu, V., Ghosh, N., (2020), A convolution property of univalent harmonic right half mappings, Monatshefte für Mathematik, 193, 729-736. DOI: https://doi.org/10.1007/
s00605-020-01442-3.
-
[19] Yalçın, S., Bayram, H., Oros, G. I., (2024), Some properties and graphical applications of a new subclass of harmonic functions defined by a differential inequality, Mathematics, 12(15), 2338. DOI:
https://doi.org/10.3390/math12152338.
-
[20] Breaz, D., Durmu¸s, A., Yalçın, S., Cotirla, L.-I., Bayram, H., (2023), Certain properties of harmonic functions defined by a second-order differential inequality, Mathematics, 11(19), 4039. DOI: https:
//doi.org/10.3390/math11194039.
-
[21] Çakmak, S., Ya¸sar, E., Yalçın, S., (2022), Some basic geometric properties of a subclass of harmonic mappings, Bolet´ın de la Sociedad Matem´atica Mexicana, 28, 54. DOI: https://doi.org/10.1007/
s40590-022-00448-1.
-
[22] Dorff, M., Hamidi, S. G., Jahangiri, J. M., Yaşar, E., (2021), Convolutions of planar harmonic strip mappings, Complex Variables and Elliptic Equations, 66(11), 1904-1921. DOI: https://doi.org/10.
1080/17476933.2020.1789864.
-
[23] Çakmak, S., Yaşar, E., Yalçın, S., (2022), New subclass of the class of close-to-convex harmonic mappings defined by a third-order differential inequality, Hacettepe Journal of Mathematics and Statistics, 51(1), 172-186. DOI: https://doi.org/10.15672/hujms.922981.
Year 2025,
Volume: 15 Issue: 9, 2181 - 2191, 01.09.2025
Serkan Çakmak
,
Sibel Yalcın
References
-
[1] Clunie, J., Sheil-Small, T., (1984), Harmonic univalent functions, Annales Fennici Mathematici, 9(1), 3-25. DOI: https://doi.org/10.5186/aasfm.1984.0905.
-
[2] Kowalczyk, J., Le´s-Bomba, E., (2010), On a subclass of close-to-convex functions, Applied Mathematics Letters, 23(10), 1147-1151. DOI: https://doi.org/10.1016/j.aml.2010.03.004.
-
[3] Owa, S., Nunokawa, M., Saitoh, H., Srivastava, H. M., (2002), Close-to-convexity, starlikeness, and convexity of certain analytic functions, Applied Mathematics Letters, 15(1), 63-69. DOI: https://
doi.org/10.1016/S0893-9659(01)00094-5.
-
[4] Gao, C., Zhou, S., (2005), On a class of analytic functions related to the starlike functions, Kyungpook Mathematical Journal, 45(1), 123-130.
-
[5] Şeker, B., (2011), On certain new subclass of close-to-convex functions, Applied Mathematics and Computation, 218(3), 1041-1045. DOI: https://doi.org/10.1016/j.amc.2011.03.018.
-
[6] Ponnusamy, S., Yamamoto, H., Yanagihara, H., (2013), Variability regions for certain families of harmonic univalent mappings, Complex Variables and Elliptic Equations, 58(1), 23-34. DOI: https:
//doi.org/10.1080/17476933.2010.551200.
-
[7] Li, L., Ponnusamy, S., (2013), Disk of convexity of sections of univalent harmonic functions, Journal
of Mathematical Analysis and Applications, 408, 589-596. DOI: https://doi.org/10.1016/j.jmaa.2013.06.021.
-
[8] Li, L., Ponnusamy, S., (2013), Injectivity of sections of univalent harmonic mappings, Nonlinear Analysis, 89, 276-283. DOI: https://doi.org/10.1016/j.na.2013.05.016.
-
[9] Ghosh, N., Vasudevarao, A., (2019), On a subclass of harmonic close-to-convex mappings, Monatshefte für Mathematik, 188, 247-267. DOI: https://doi.org/10.1007/s00605-017-1138-7.
-
[10] Rajbala, Prajapat, J. K., (2020), Certain geometric properties of close-to-convex harmonic mappings, Asian-European Journal of Mathematics. DOI: https://doi.org/10.1142/S1793557121501023.
-
[11] Çakmak, S., Yaşar, E., Yalçın, Y., (2024), Some basic properties of a subclass of close-to-convex harmonic mappings, TWMS Journal of Pure and Applied Mathematics, 15(2), 163-173. DOI: https:
//doi.org/10.30546/2219-1259.15.2.2024.01163.
-
[12] Yaşar, E., Yalçın, S., (2021), Close-to-convexity of a class of harmonic mappings defined by a third order differential inequality, Turkish Journal of Mathematics, 45(2), 678-694. DOI: https://doi.org/10.3906/mat-2004-50.
-
[13] Bshouty, D., Lyzzaik, A., (2011), Close-to-convexity criteria for planar harmonic mappings, Complex Analysis and Operator Theory, 5, 767-774. DOI: https://doi.org/10.1007/s11785-010-0056-7.
-
[14] Kalaj, D., Ponnusamy, S., Vuorinen, M., (2014), Radius of close-to-convexity and full starlikeness of harmonic mappings, Complex Variables and Elliptic Equations, 59, 539-552. DOI: https://doi.org/10.1080/17476933.2012.759565.
-
[15] Ghosh, N., Vasudevarao, A., (2018), Some basic properties of certain subclass of harmonic univalent functions, Complex Variables and Elliptic Equations, 63, 1687-1703. DOI: https://doi.org/10.1080/17476933.2017.1403426.
-
[16] Ghosh, N., Vasudevarao, A., (2019), The radii of fully starlikeness and fully convexity of a harmonic operator, Monatshefte für Mathematik, 188, 653-666. DOI: https://doi.org/10.1007/
s00605-018-1163-1.
-
[17] Ghosh, N., Vasudevarao, A., (2020), On some subclass of harmonic mappings, Bulletin of the Australian Mathematical Society, 101, 130-140. DOI: https://doi.org/10.1017/S0004972719000698.
-
[18] Ali, M. F., Allu, V., Ghosh, N., (2020), A convolution property of univalent harmonic right half mappings, Monatshefte für Mathematik, 193, 729-736. DOI: https://doi.org/10.1007/
s00605-020-01442-3.
-
[19] Yalçın, S., Bayram, H., Oros, G. I., (2024), Some properties and graphical applications of a new subclass of harmonic functions defined by a differential inequality, Mathematics, 12(15), 2338. DOI:
https://doi.org/10.3390/math12152338.
-
[20] Breaz, D., Durmu¸s, A., Yalçın, S., Cotirla, L.-I., Bayram, H., (2023), Certain properties of harmonic functions defined by a second-order differential inequality, Mathematics, 11(19), 4039. DOI: https:
//doi.org/10.3390/math11194039.
-
[21] Çakmak, S., Ya¸sar, E., Yalçın, S., (2022), Some basic geometric properties of a subclass of harmonic mappings, Bolet´ın de la Sociedad Matem´atica Mexicana, 28, 54. DOI: https://doi.org/10.1007/
s40590-022-00448-1.
-
[22] Dorff, M., Hamidi, S. G., Jahangiri, J. M., Yaşar, E., (2021), Convolutions of planar harmonic strip mappings, Complex Variables and Elliptic Equations, 66(11), 1904-1921. DOI: https://doi.org/10.
1080/17476933.2020.1789864.
-
[23] Çakmak, S., Yaşar, E., Yalçın, S., (2022), New subclass of the class of close-to-convex harmonic mappings defined by a third-order differential inequality, Hacettepe Journal of Mathematics and Statistics, 51(1), 172-186. DOI: https://doi.org/10.15672/hujms.922981.