Research Article
BibTex RIS Cite

EXISTENCE OF SOLUTIONS FOR NAVIER PROBLEM INVOLVING $(p(.),q(.))$-LAPLACIAN AND $(p(.),q(.))$-BIHARMONIC OPERATORS

Year 2025, Volume: 15 Issue: 9, 2192 - 2201, 01.09.2025

Abstract

In the present paper, we are interested in the study of nonlinear problem driven by $(p(.),q(.))$-Laplacian and $(p(.),q(.))$-Biharmonic operators subject to Navier boundary conditions. By means of variational method and critical point theory, we establish the existence of at least one solution and infinitely many solutions under some suitable assumptions.

Thanks

The authors would like to thank the referees for their helpful comments and suggestions.

References

  • Ambrosetti, A., Rabinowitz, P.H., (1973), Dual variational methods in critical points theory and applications, J. Funct. Anal., 14, pp. 349-381.
  • Allaoui, M., El Amrouss, A.R., Ourraoui, A., (2015), Infinitely many solutions for a nonlinear Navier boundary systems involving $(p (x), q (x)) $-biharmonic, Bol. Socied. Paran. Mat., 33 (1), pp. 157-170.
  • Ayoujil, A., El Amrouss, A. R., (2009), On the spectrum of a fourth order elliptic equation with variable exponent, Nonl. Anal.: Theo., Meth. Appl., 71 (10), pp. 4916-4926.
  • Azorero, J. G., Alonso, I. P., (1998), Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Equ., 144 (2), pp. 441-476.
  • Bobkov, V., Tanaka, M., (2015), On positive solutions for $(p, q)$-Laplace equations with two parameters, Calc. Var. Part. Diff. Equ., 54, pp. 3277-3301.
  • Cavalheiro, A.C., (2018), Existence results for Navier problems with degenerated $(p, q)$-Laplacian and $(p, q)$-biharmonic operators, Resul. Nonl. Anal., 1 (2), pp. 74-87.
  • Chen, Y., Levine, S., Rao, M., (2006), Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (4), pp. 1383-1406.
  • Diening, L., (2002), Theoretical and Numerical Results for Electrorheological Fluids, PhD. thesis.
  • Fan, X., Zhao, D., (2001), On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2), pp. 424-446.
  • Ho, K., Sim, I., (2015), Existence and multiplicity of solutions for degenerate $ p (x) $-Laplace equations involving concave-convex type nonlinearities with two parameters, Taiw. J. Math., 19 (5), pp. 1469-1493.
  • Ruzicka, M., (2000), Electrorheological Fluids Modeling and Mathematical Theory, Springer-Verlag, Berlin.
  • Willem, M., (1996), Minimax Theorems, Birkhauser, Boston.
  • Zhikov, V. V. E., (1987), Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izv., 29 (1), pp. 33.
  • Moujane, N., El Ouaarabi, M., Allalou, C., (2023), Study of some elliptic system of $(p(x); q(x))$-Kirchhoff type with convection, J. Ell. Parab. Equ., 9 (2), pp. 687-704.
  • El Ouaarabi, M., Allalou, C., Melliani, S., (2023), Weak solutions for double phase problem driven by the $(p (x), q (x))$-Laplacian operator under Dirichlet boundary conditions, Bol. Soci. Para. Mat., 41, pp. 1-14.
  • Ouaarabi, M. E., Allalou, C., Melliani, S., (2023), Existence Result for a Double Phase Problem Involving the $(p (x), q (x))$-Laplacian Operator, Math. Slov., 73 (4), pp. 969-982.
  • Moujane, N., El, O. M., Allalou, C., (2023), Elliptic Kirchhoff-type system with two convections terms and under Dirichlet boundary conditions, Filo., 37 (28), pp. 9693-9707.
  • Allalou, M., El Ouaarabi, M., Raji, A., (2024), On a Class of $p (z)$-Biharmonic Kirchhoff Type Problems with Indefinite Weight and No-Flow Boundary Condition, Iran. J. Sci., pp. 1-10.
  • Arora, R., Shmarev, S., (2022), Double-phase parabolic equations with variable growth and nonlinear sources, Adv. Nonl. Anal., 12 (1), pp. 304-335.
  • Cai, L., Zhang, F., (2024), Normalized solutions for the double-phase problem with nonlocal reaction, Adv. Nonl. Anal., 13 (1), pp. 20240026.
  • Leonardi, S., Papageorgiou, N. S., (2023), Positive solutions for a class of singular $(p, q)$-equations, Adv. Non. Anal., 12 (1), 20220300.
  • Liu, J., Pucci, P., (2023), Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition, Adv. Nonl. Anal., 12 (1), pp. 20220292.
  • Xiang, M., Ma, Y., Yang, M., (2024), Normalized homoclinic solutions of discrete nonlocal double phase problems, Bull. Math. Sci., 14 (02), pp. 2450003.

Year 2025, Volume: 15 Issue: 9, 2192 - 2201, 01.09.2025

Abstract

References

  • Ambrosetti, A., Rabinowitz, P.H., (1973), Dual variational methods in critical points theory and applications, J. Funct. Anal., 14, pp. 349-381.
  • Allaoui, M., El Amrouss, A.R., Ourraoui, A., (2015), Infinitely many solutions for a nonlinear Navier boundary systems involving $(p (x), q (x)) $-biharmonic, Bol. Socied. Paran. Mat., 33 (1), pp. 157-170.
  • Ayoujil, A., El Amrouss, A. R., (2009), On the spectrum of a fourth order elliptic equation with variable exponent, Nonl. Anal.: Theo., Meth. Appl., 71 (10), pp. 4916-4926.
  • Azorero, J. G., Alonso, I. P., (1998), Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Equ., 144 (2), pp. 441-476.
  • Bobkov, V., Tanaka, M., (2015), On positive solutions for $(p, q)$-Laplace equations with two parameters, Calc. Var. Part. Diff. Equ., 54, pp. 3277-3301.
  • Cavalheiro, A.C., (2018), Existence results for Navier problems with degenerated $(p, q)$-Laplacian and $(p, q)$-biharmonic operators, Resul. Nonl. Anal., 1 (2), pp. 74-87.
  • Chen, Y., Levine, S., Rao, M., (2006), Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (4), pp. 1383-1406.
  • Diening, L., (2002), Theoretical and Numerical Results for Electrorheological Fluids, PhD. thesis.
  • Fan, X., Zhao, D., (2001), On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2), pp. 424-446.
  • Ho, K., Sim, I., (2015), Existence and multiplicity of solutions for degenerate $ p (x) $-Laplace equations involving concave-convex type nonlinearities with two parameters, Taiw. J. Math., 19 (5), pp. 1469-1493.
  • Ruzicka, M., (2000), Electrorheological Fluids Modeling and Mathematical Theory, Springer-Verlag, Berlin.
  • Willem, M., (1996), Minimax Theorems, Birkhauser, Boston.
  • Zhikov, V. V. E., (1987), Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izv., 29 (1), pp. 33.
  • Moujane, N., El Ouaarabi, M., Allalou, C., (2023), Study of some elliptic system of $(p(x); q(x))$-Kirchhoff type with convection, J. Ell. Parab. Equ., 9 (2), pp. 687-704.
  • El Ouaarabi, M., Allalou, C., Melliani, S., (2023), Weak solutions for double phase problem driven by the $(p (x), q (x))$-Laplacian operator under Dirichlet boundary conditions, Bol. Soci. Para. Mat., 41, pp. 1-14.
  • Ouaarabi, M. E., Allalou, C., Melliani, S., (2023), Existence Result for a Double Phase Problem Involving the $(p (x), q (x))$-Laplacian Operator, Math. Slov., 73 (4), pp. 969-982.
  • Moujane, N., El, O. M., Allalou, C., (2023), Elliptic Kirchhoff-type system with two convections terms and under Dirichlet boundary conditions, Filo., 37 (28), pp. 9693-9707.
  • Allalou, M., El Ouaarabi, M., Raji, A., (2024), On a Class of $p (z)$-Biharmonic Kirchhoff Type Problems with Indefinite Weight and No-Flow Boundary Condition, Iran. J. Sci., pp. 1-10.
  • Arora, R., Shmarev, S., (2022), Double-phase parabolic equations with variable growth and nonlinear sources, Adv. Nonl. Anal., 12 (1), pp. 304-335.
  • Cai, L., Zhang, F., (2024), Normalized solutions for the double-phase problem with nonlocal reaction, Adv. Nonl. Anal., 13 (1), pp. 20240026.
  • Leonardi, S., Papageorgiou, N. S., (2023), Positive solutions for a class of singular $(p, q)$-equations, Adv. Non. Anal., 12 (1), 20220300.
  • Liu, J., Pucci, P., (2023), Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition, Adv. Nonl. Anal., 12 (1), pp. 20220292.
  • Xiang, M., Ma, Y., Yang, M., (2024), Normalized homoclinic solutions of discrete nonlocal double phase problems, Bull. Math. Sci., 14 (02), pp. 2450003.
There are 23 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems
Journal Section Research Articles
Authors

Abdessamad El Katit This is me 0000-0002-7385-8513

Abdelrachid El Amrouss This is me 0000-0003-3536-398X

Fouad Kissi This is me 0000-0002-0017-265X

Publication Date September 1, 2025
Submission Date August 12, 2024
Acceptance Date January 16, 2025
Published in Issue Year 2025 Volume: 15 Issue: 9

Cite