Research Article
BibTex RIS Cite

A NEW NUMERICAL METHOD FOR APPROXIMATION OF HYPERSINGULAR INTEGRALS

Year 2025, Volume: 15 Issue: 9, 2216 - 2228, 01.09.2025

Abstract

In this paper, we investigate the construction of a new numerical method for approximating Cauchy and Hilbert hypersingular integrals, which are important in various fields such as engineering, physics, and applied mathematics due to their significant role in the solution of singular and hypersingular integral equations. To validate the theoretical analysis, we have conducted several numerical examples implemented in the MATLAB programming language. The obtained results demonstrate the stability, accuracy, and efficiency of the suggested approach. The proposed quadrature formulas are not only straightforward to compute but also scalable, ensuring the reliability and applicability of the method to a wide range of practical problems. This makes the method particularly useful for real-world applications requiring high computational efficiency.

References

  • Aliev, R. A., Amrakhova, A. F. (2012), A constructive method for the solution of integral equations with Hilbert kernel, Tr. Inst. Mat. Mekh., 18(4), pp. 14-25.
  • Aliev, R. A., (2006), A new constructive method for solving singular integral equations, Math. Notes, 79(5-6), pp. 749-770.
  • Aliev, R. A., Gadjieva, Ch. A., (2019), Approximation of Hilbert Transformation, Tr. Inst. Mat. Mekh., 25(2), pp. 31-41.
  • Aliev, R. A., Gadjieva, Ch. A., (2016), Approximation of hypersingular integral operators with Cauchy kernel, Numer. Funct. Anal. Optim., 37(9), pp. 1055-1065.
  • Aliev, R. A., Gadjieva, Ch. A., (2017), Approximate solution of hipersingulyar integral equations with Cauchy kernel, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 37(1), pp. 20-29.
  • Amrakhova, A. F., Gadjieva, Ch. A., (2015), Approximation of a hypersingular integral operator on the circle, News BU Ph. Math. Sc. Ser., 4, pp. 43-50.
  • Anfinogenov, A. Yu., Lifanov, I. K., Lifanov, P. I., (2001), On certain one and two dimensional hypersingular integral equations, Sb. Math., 192(8), pp. 1089-1131.
  • Ang, W. T., (2013), Hypersingular Integral Equations in Fracture Analysis, Woodhead Publishing, Cambridge .
  • Boikov, I. V., Syomov, M. A., (2016), On a Method of Calculation of Hypersingular Integrals, Russian Math. (Iz. VUZ), 60(3), pp. 1–13.
  • Boykov, I. V., (2005), Approximate Methods for Evaluation of Singular and Hypersingular Integrals, Part 1, Singular Integrals; Penza State University Press: Penza, Russia.
  • Boykov, I. V., Boykova, A. I., Ventsel, E. S., (2004), Fundamental solutions for thick sandwich plates, Eng. Anal. Bound. Elem., 28, pp. 1437–1444.
  • Boykov, I. V., (2001), Numerical methods of computation of singular and hypersingular integrals, Int. J. Math. Math. Sci., 28(3), pp. 127–179.
  • Boykov, I. V., Ventsel, E. S., Boykova, A. I., (2006), An approximate method for evaluating hypersingular integrals, Eng. Anal. Bound. Elem., 30, pp. 799–807.
  • De Bonis, M. C., Sagaria, V., (2022), Numerical method for hypersingular integrals of highly oscillatory functions on the positive semiaxis, Dolomites Res. Notes Approx., 15, pp. 49-64.
  • Eshkuvatov, Z. K., Al-Hadi, I. A. A., Bahramov, S., (2022), Automatic Quadrature Scheme For Cauchy Type Singular Integral On The Variable Interval, J. Math. Sci. Inf., 2(1), pp. 37-50.
  • Eshkuvatov, Z. K., Nik Long, N. M. A., Abdulkawi, M., (2009), Quadrature formula for approximating the singular integral of Cauchy type with unbounded weight function on the edges, J. Comput. Appl. Math., 233(2), pp. 334-345.
  • Gadjieva, Ch. A., (2023), A new approximate method for hypersingular integral operator with Hilbert kernel, JCAM, 13(1), pp. 99-110.
  • Gadjieva, Ch. A., (2017), A new approximate method for solving hypersingular integral equations with Hilbert kernel, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb, 43(2), pp. 316-329.
  • Gadjieva, Ch. A., (2016), A new constructive method for solving of bisingular integral equations with Cauchy kernel, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 42(1), pp. 50-66.
  • Gadjieva, Ch. A., (2017), Approximation of a hypersingular integral operator with Cauchy kernel, News BU Ph. Math. Sc. Ser., 1, pp. 76-87.
  • Gadjieva, Ch. A., (2017), Approximation of hypersingular integral operators on Hölder spaces, CJAMEE, 5(2), pp. 96-105.
  • Gadjieva, Ch. A., (2024), On some Hypersingular integrals, J. Baku Eng. Uni.- Math. and Comp. sci., 8(1), pp. 21-31.
  • Hadamard, J., (2003), Lectures on Cauchy's problem in linear partial differential equations, Dover publication, New-York.
  • Hu, Ch., Lu, T., (2018), Approximations of hypersingular integrals for negative fractional exponent, J. Comput. Math., 36(5), pp. 627–643.
  • Hu, Ch., He, X., Lu, T., (2015), Euler-Maclaurin expansions and approximations of hypersingular integrals, Discrete Contin. Dyn. Syst. Ser. B, 20(5), pp. 1355-1375.
  • Kolm, P., Rokhlin, V., (2001), Numerical quadratures for singular and hypersingular integrals, Comput. Math. Appl., 41, pp. 327-352.
  • Lifanov, I. K., (1995), Method of singular equations and numerical experiment, Moscow: TOO Yanus.
  • Lifanov, I. K., Poltavskii, L. N., Vainikko, G. M., (2004), Hypersingular integral equations and their applications, CRC Press.
  • Lifanov, I. K., (1996), Singular integral equations and Discrete Vortices, Utrecht, Netherlands: VSP, BV.
  • Monegato, G., (1994) Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math., 50, pp. 9–31.
  • Nik Long, N. M. A., Eshkuvatov, Z. K., (2009), Hypersingular integral equation for multiplen curved cracks problem in plane elasticity, Int. J. Solids Struct., 46, pp. 2611–2617.
  • Obaiys, S. J., Eshkuvatov, Z. K., Nik Long, N. M. A., (2013), On error estimation of automatic quadrature scheme for the evaluation of Hadamard integral of second order singularity, U.P.B. Sci. Bull., Series A., 75(1), pp. 85-98.
  • Shoukralla, E. S., Ahmed, B. M. (2023), Barycentric Lagrange interpolation methods for evaluating singular integrals, AEJ, 69, pp. 243–253.
  • Sidi, A., (2014), Analysis of errors in some recent numerical quadrature formulas for periodic singular and hypersingular integrals via regularization, Appl. Numer. Math., 81, pp. 30–39.
  • Sidi, A., (2013), Compact Numerical Quadrature Formulas for Hypersingular Integrals and Integral Equations, J. Sci. Comput., 54(1), pp. 145-176.
  • Sidi, A., (2014), Richardson Extrapolation on Some Recent Numerical Quadrature Formulas for Singular and Hypersingular Integrals and Its Study of Stability, J. Sci. Comput., 60(1), pp. 141-159.
  • Sidi, A., (2021), Unified compact numerical quadrature formulas for Hadamard finite parts of singular integrals of periodic functions, Calcolo, 58(22), pp. 1-24.
  • Zheng, C., Matsumoto, T., Takahashi, T., Chen, H., (2011), Explicit evaluation of hypersingular boundary integral equations for acoustic sensitivity analysis based on direct differentiation method, Eng. Anal. Bound. Elem., 35(11), pp. 1225-1235.
  • Zygmund, A., (1965), Trigonometric series, Mir Publishers Mosow, V. I, II.

Year 2025, Volume: 15 Issue: 9, 2216 - 2228, 01.09.2025

Abstract

References

  • Aliev, R. A., Amrakhova, A. F. (2012), A constructive method for the solution of integral equations with Hilbert kernel, Tr. Inst. Mat. Mekh., 18(4), pp. 14-25.
  • Aliev, R. A., (2006), A new constructive method for solving singular integral equations, Math. Notes, 79(5-6), pp. 749-770.
  • Aliev, R. A., Gadjieva, Ch. A., (2019), Approximation of Hilbert Transformation, Tr. Inst. Mat. Mekh., 25(2), pp. 31-41.
  • Aliev, R. A., Gadjieva, Ch. A., (2016), Approximation of hypersingular integral operators with Cauchy kernel, Numer. Funct. Anal. Optim., 37(9), pp. 1055-1065.
  • Aliev, R. A., Gadjieva, Ch. A., (2017), Approximate solution of hipersingulyar integral equations with Cauchy kernel, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 37(1), pp. 20-29.
  • Amrakhova, A. F., Gadjieva, Ch. A., (2015), Approximation of a hypersingular integral operator on the circle, News BU Ph. Math. Sc. Ser., 4, pp. 43-50.
  • Anfinogenov, A. Yu., Lifanov, I. K., Lifanov, P. I., (2001), On certain one and two dimensional hypersingular integral equations, Sb. Math., 192(8), pp. 1089-1131.
  • Ang, W. T., (2013), Hypersingular Integral Equations in Fracture Analysis, Woodhead Publishing, Cambridge .
  • Boikov, I. V., Syomov, M. A., (2016), On a Method of Calculation of Hypersingular Integrals, Russian Math. (Iz. VUZ), 60(3), pp. 1–13.
  • Boykov, I. V., (2005), Approximate Methods for Evaluation of Singular and Hypersingular Integrals, Part 1, Singular Integrals; Penza State University Press: Penza, Russia.
  • Boykov, I. V., Boykova, A. I., Ventsel, E. S., (2004), Fundamental solutions for thick sandwich plates, Eng. Anal. Bound. Elem., 28, pp. 1437–1444.
  • Boykov, I. V., (2001), Numerical methods of computation of singular and hypersingular integrals, Int. J. Math. Math. Sci., 28(3), pp. 127–179.
  • Boykov, I. V., Ventsel, E. S., Boykova, A. I., (2006), An approximate method for evaluating hypersingular integrals, Eng. Anal. Bound. Elem., 30, pp. 799–807.
  • De Bonis, M. C., Sagaria, V., (2022), Numerical method for hypersingular integrals of highly oscillatory functions on the positive semiaxis, Dolomites Res. Notes Approx., 15, pp. 49-64.
  • Eshkuvatov, Z. K., Al-Hadi, I. A. A., Bahramov, S., (2022), Automatic Quadrature Scheme For Cauchy Type Singular Integral On The Variable Interval, J. Math. Sci. Inf., 2(1), pp. 37-50.
  • Eshkuvatov, Z. K., Nik Long, N. M. A., Abdulkawi, M., (2009), Quadrature formula for approximating the singular integral of Cauchy type with unbounded weight function on the edges, J. Comput. Appl. Math., 233(2), pp. 334-345.
  • Gadjieva, Ch. A., (2023), A new approximate method for hypersingular integral operator with Hilbert kernel, JCAM, 13(1), pp. 99-110.
  • Gadjieva, Ch. A., (2017), A new approximate method for solving hypersingular integral equations with Hilbert kernel, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb, 43(2), pp. 316-329.
  • Gadjieva, Ch. A., (2016), A new constructive method for solving of bisingular integral equations with Cauchy kernel, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 42(1), pp. 50-66.
  • Gadjieva, Ch. A., (2017), Approximation of a hypersingular integral operator with Cauchy kernel, News BU Ph. Math. Sc. Ser., 1, pp. 76-87.
  • Gadjieva, Ch. A., (2017), Approximation of hypersingular integral operators on Hölder spaces, CJAMEE, 5(2), pp. 96-105.
  • Gadjieva, Ch. A., (2024), On some Hypersingular integrals, J. Baku Eng. Uni.- Math. and Comp. sci., 8(1), pp. 21-31.
  • Hadamard, J., (2003), Lectures on Cauchy's problem in linear partial differential equations, Dover publication, New-York.
  • Hu, Ch., Lu, T., (2018), Approximations of hypersingular integrals for negative fractional exponent, J. Comput. Math., 36(5), pp. 627–643.
  • Hu, Ch., He, X., Lu, T., (2015), Euler-Maclaurin expansions and approximations of hypersingular integrals, Discrete Contin. Dyn. Syst. Ser. B, 20(5), pp. 1355-1375.
  • Kolm, P., Rokhlin, V., (2001), Numerical quadratures for singular and hypersingular integrals, Comput. Math. Appl., 41, pp. 327-352.
  • Lifanov, I. K., (1995), Method of singular equations and numerical experiment, Moscow: TOO Yanus.
  • Lifanov, I. K., Poltavskii, L. N., Vainikko, G. M., (2004), Hypersingular integral equations and their applications, CRC Press.
  • Lifanov, I. K., (1996), Singular integral equations and Discrete Vortices, Utrecht, Netherlands: VSP, BV.
  • Monegato, G., (1994) Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math., 50, pp. 9–31.
  • Nik Long, N. M. A., Eshkuvatov, Z. K., (2009), Hypersingular integral equation for multiplen curved cracks problem in plane elasticity, Int. J. Solids Struct., 46, pp. 2611–2617.
  • Obaiys, S. J., Eshkuvatov, Z. K., Nik Long, N. M. A., (2013), On error estimation of automatic quadrature scheme for the evaluation of Hadamard integral of second order singularity, U.P.B. Sci. Bull., Series A., 75(1), pp. 85-98.
  • Shoukralla, E. S., Ahmed, B. M. (2023), Barycentric Lagrange interpolation methods for evaluating singular integrals, AEJ, 69, pp. 243–253.
  • Sidi, A., (2014), Analysis of errors in some recent numerical quadrature formulas for periodic singular and hypersingular integrals via regularization, Appl. Numer. Math., 81, pp. 30–39.
  • Sidi, A., (2013), Compact Numerical Quadrature Formulas for Hypersingular Integrals and Integral Equations, J. Sci. Comput., 54(1), pp. 145-176.
  • Sidi, A., (2014), Richardson Extrapolation on Some Recent Numerical Quadrature Formulas for Singular and Hypersingular Integrals and Its Study of Stability, J. Sci. Comput., 60(1), pp. 141-159.
  • Sidi, A., (2021), Unified compact numerical quadrature formulas for Hadamard finite parts of singular integrals of periodic functions, Calcolo, 58(22), pp. 1-24.
  • Zheng, C., Matsumoto, T., Takahashi, T., Chen, H., (2011), Explicit evaluation of hypersingular boundary integral equations for acoustic sensitivity analysis based on direct differentiation method, Eng. Anal. Bound. Elem., 35(11), pp. 1225-1235.
  • Zygmund, A., (1965), Trigonometric series, Mir Publishers Mosow, V. I, II.
There are 39 citations in total.

Details

Primary Language English
Subjects Numerical Solution of Differential and Integral Equations
Journal Section Research Articles
Authors

Chinara Gadjieva 0009-0003-6912-4271

Publication Date September 1, 2025
Submission Date September 4, 2024
Acceptance Date April 19, 2025
Published in Issue Year 2025 Volume: 15 Issue: 9

Cite