AN INTEGRAL TYPE OPERATOR ON $S^p$ SPACES AND ITS ESSENTIAL NORM
Year 2025,
Volume: 15 Issue: 9, 2229 - 2238, 01.09.2025
Mina Safarzadeh
Mostafa Hassanlou
,
Mina Ettefagh
Zohreh Zeinalabedini Charandabi
Abstract
Given two analytic functions $\lambda: \mathbf{D} \rightarrow \mathbf{D}$ and $\nu: \mathbf{D} \rightarrow \mathbb{C}$ and $n \in \mathbb{N}_0$, we study boundedness of the integral-type operator $C_{\lambda,\nu}^n$ acting from derivative Hardy space into Zygmund space. We also get an approximation for the essential norm of this operator. A characterization for compactness of the operator can be obtained from the essential norm.
References
-
Abkar, A. and Babaei, A., (2024), Composition-Differentiation Operators on Derivative Hardy Spaces, J. Math., 2024, Article ID 8222237, 6 pages.
-
Al-Rawashdeh, W., (2024), Volterra-composition operators acting on $S^p$ spaces and weighted Zygmund spaces, Eur. J. Pure Appl. Math., 17(2), pp. 931-944.
-
Aleman, A. and Siskakkis, A. G., (1995), An integral operator on $H^p$, Complex Variables, Theory and Application: An International Journal 28, pp. 149-158.
-
Aleman, A. and Siskakkis, A. G., (1997), Integral operators on Bergman spaces, Indiana U. Math. J., 46, pp. 337-356.
-
Alighadr, A., Vaezi, H. and Hassanlou, M., (2022), Essential norm of the generalized integration operator from Zygmund space into weighted Dirichlet type space, Sahand Commun. Math. Anal., 19(2), pp. 33-47.
-
Contreras M. D. and Hernandez-Diaz, A.G., (2004), Weighted composition operators on spaces of functions with derivative in a Hardy space, J. Oper. Theory, 52, pp. 173-184.
-
Cowen, C. C. and MacCluer B. D., (1995), Composition operators on spaces of analytic functions, Studies in Advanced Mathematics. CRC Press, Boca Raton.
-
Duren P., (1973), Theory of $H^p$ spaces, Academic Press, New York.
-
Hassanlou M. and Abbasi E., (2023), Weighted composition, Volterra and integral operators on Hardy Zygmund-type spaces, J. Math. Ext., 17(8), pp. 1-11.
-
Hassanlou M., Abbasi E. and Nasresfahani, S., (2023), n-th derivative Hardy spaces and weighted differentiation composition operators, Iran. J. Sci., 47(4), pp. 1351-1358.
-
Hu, N., (2021), Weighted composition operators from derivative Hardy spaces into n-th weighted-type spaces, J. Math., 2021, Article ID 4398397, 8 pages.
-
Li, S. and Stevic, S., (2008), Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338, pp. 1282-1295
-
Liu, J., Lin, Q. and Wu, Y., (2018), Volterra type operators on $S^p (\mathbb{D})$ spaces, J. Math. Anal. Appl., 461, pp. 1100-1114.
-
MacCluer, B. D., (1987), Composition operators on $S^p$, Houston J. Math., 13, pp. 245-254.
-
Manavi, A., Hassanlou M. and Vaezi, H., (2023), Essential norm of generalized integral type operator from $Q_K(p,q)$ to Zygmund Spaces, Filomat, 37(16), pp. 5273-5282.
-
Pommerenke, C., (1977), Schlichte Funktionen und analytische Funktionen von Beschrankter mittlerer Oszillation, Comment. Math. Helv., 52, pp. 591-602.
-
Roan, R., (1978), Composition operators on the space of functions with $H^p$-derivative, Houston J. Math., 4, pp. 423-438.
-
Xie, H., Liu, J. and Wu, Y., (2021), Weighted composition operators on spaces of functions with derivative in a Bergman space, Ann. Funct. Anal., 12(24), article number 24.
-
Xie, H., Liu, J. and Ponnusamy, S., (2023), Volterra-type operators on the minimal Möbius-invariant space, Canad. Math. Bull., 66(2), pp. 509-524
-
Ye, S. and Zhuo, Z., (2013), Weighted composition operators from Hardy to Zygmund type spaces, Abstr. Appl. Anal. 2013, Article ID 365286.
-
Zhu, X., (2012), An integral-type operator from $H^{\infty}$ to Zygmund-type spaces, Bull. Malays. Math. Sci. Soc., 35, pp. 679-686.
Year 2025,
Volume: 15 Issue: 9, 2229 - 2238, 01.09.2025
Mina Safarzadeh
Mostafa Hassanlou
,
Mina Ettefagh
Zohreh Zeinalabedini Charandabi
References
-
Abkar, A. and Babaei, A., (2024), Composition-Differentiation Operators on Derivative Hardy Spaces, J. Math., 2024, Article ID 8222237, 6 pages.
-
Al-Rawashdeh, W., (2024), Volterra-composition operators acting on $S^p$ spaces and weighted Zygmund spaces, Eur. J. Pure Appl. Math., 17(2), pp. 931-944.
-
Aleman, A. and Siskakkis, A. G., (1995), An integral operator on $H^p$, Complex Variables, Theory and Application: An International Journal 28, pp. 149-158.
-
Aleman, A. and Siskakkis, A. G., (1997), Integral operators on Bergman spaces, Indiana U. Math. J., 46, pp. 337-356.
-
Alighadr, A., Vaezi, H. and Hassanlou, M., (2022), Essential norm of the generalized integration operator from Zygmund space into weighted Dirichlet type space, Sahand Commun. Math. Anal., 19(2), pp. 33-47.
-
Contreras M. D. and Hernandez-Diaz, A.G., (2004), Weighted composition operators on spaces of functions with derivative in a Hardy space, J. Oper. Theory, 52, pp. 173-184.
-
Cowen, C. C. and MacCluer B. D., (1995), Composition operators on spaces of analytic functions, Studies in Advanced Mathematics. CRC Press, Boca Raton.
-
Duren P., (1973), Theory of $H^p$ spaces, Academic Press, New York.
-
Hassanlou M. and Abbasi E., (2023), Weighted composition, Volterra and integral operators on Hardy Zygmund-type spaces, J. Math. Ext., 17(8), pp. 1-11.
-
Hassanlou M., Abbasi E. and Nasresfahani, S., (2023), n-th derivative Hardy spaces and weighted differentiation composition operators, Iran. J. Sci., 47(4), pp. 1351-1358.
-
Hu, N., (2021), Weighted composition operators from derivative Hardy spaces into n-th weighted-type spaces, J. Math., 2021, Article ID 4398397, 8 pages.
-
Li, S. and Stevic, S., (2008), Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338, pp. 1282-1295
-
Liu, J., Lin, Q. and Wu, Y., (2018), Volterra type operators on $S^p (\mathbb{D})$ spaces, J. Math. Anal. Appl., 461, pp. 1100-1114.
-
MacCluer, B. D., (1987), Composition operators on $S^p$, Houston J. Math., 13, pp. 245-254.
-
Manavi, A., Hassanlou M. and Vaezi, H., (2023), Essential norm of generalized integral type operator from $Q_K(p,q)$ to Zygmund Spaces, Filomat, 37(16), pp. 5273-5282.
-
Pommerenke, C., (1977), Schlichte Funktionen und analytische Funktionen von Beschrankter mittlerer Oszillation, Comment. Math. Helv., 52, pp. 591-602.
-
Roan, R., (1978), Composition operators on the space of functions with $H^p$-derivative, Houston J. Math., 4, pp. 423-438.
-
Xie, H., Liu, J. and Wu, Y., (2021), Weighted composition operators on spaces of functions with derivative in a Bergman space, Ann. Funct. Anal., 12(24), article number 24.
-
Xie, H., Liu, J. and Ponnusamy, S., (2023), Volterra-type operators on the minimal Möbius-invariant space, Canad. Math. Bull., 66(2), pp. 509-524
-
Ye, S. and Zhuo, Z., (2013), Weighted composition operators from Hardy to Zygmund type spaces, Abstr. Appl. Anal. 2013, Article ID 365286.
-
Zhu, X., (2012), An integral-type operator from $H^{\infty}$ to Zygmund-type spaces, Bull. Malays. Math. Sci. Soc., 35, pp. 679-686.