Research Article
BibTex RIS Cite

AN INTEGRAL TYPE OPERATOR ON $S^p$ SPACES AND ITS ESSENTIAL NORM

Year 2025, Volume: 15 Issue: 9, 2229 - 2238, 01.09.2025

Abstract

Given two analytic functions $\lambda: \mathbf{D} \rightarrow \mathbf{D}$ and $\nu: \mathbf{D} \rightarrow \mathbb{C}$ and $n \in \mathbb{N}_0$, we study boundedness of the integral-type operator $C_{\lambda,\nu}^n$ acting from derivative Hardy space into Zygmund space. We also get an approximation for the essential norm of this operator. A characterization for compactness of the operator can be obtained from the essential norm.

References

  • Abkar, A. and Babaei, A., (2024), Composition-Differentiation Operators on Derivative Hardy Spaces, J. Math., 2024, Article ID 8222237, 6 pages.
  • Al-Rawashdeh, W., (2024), Volterra-composition operators acting on $S^p$ spaces and weighted Zygmund spaces, Eur. J. Pure Appl. Math., 17(2), pp. 931-944.
  • Aleman, A. and Siskakkis, A. G., (1995), An integral operator on $H^p$, Complex Variables, Theory and Application: An International Journal 28, pp. 149-158.
  • Aleman, A. and Siskakkis, A. G., (1997), Integral operators on Bergman spaces, Indiana U. Math. J., 46, pp. 337-356.
  • Alighadr, A., Vaezi, H. and Hassanlou, M., (2022), Essential norm of the generalized integration operator from Zygmund space into weighted Dirichlet type space, Sahand Commun. Math. Anal., 19(2), pp. 33-47.
  • Contreras M. D. and Hernandez-Diaz, A.G., (2004), Weighted composition operators on spaces of functions with derivative in a Hardy space, J. Oper. Theory, 52, pp. 173-184.
  • Cowen, C. C. and MacCluer B. D., (1995), Composition operators on spaces of analytic functions, Studies in Advanced Mathematics. CRC Press, Boca Raton.
  • Duren P., (1973), Theory of $H^p$ spaces, Academic Press, New York.
  • Hassanlou M. and Abbasi E., (2023), Weighted composition, Volterra and integral operators on Hardy Zygmund-type spaces, J. Math. Ext., 17(8), pp. 1-11.
  • Hassanlou M., Abbasi E. and Nasresfahani, S., (2023), n-th derivative Hardy spaces and weighted differentiation composition operators, Iran. J. Sci., 47(4), pp. 1351-1358.
  • Hu, N., (2021), Weighted composition operators from derivative Hardy spaces into n-th weighted-type spaces, J. Math., 2021, Article ID 4398397, 8 pages.
  • Li, S. and Stevic, S., (2008), Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338, pp. 1282-1295
  • Liu, J., Lin, Q. and Wu, Y., (2018), Volterra type operators on $S^p (\mathbb{D})$ spaces, J. Math. Anal. Appl., 461, pp. 1100-1114.
  • MacCluer, B. D., (1987), Composition operators on $S^p$, Houston J. Math., 13, pp. 245-254.
  • Manavi, A., Hassanlou M. and Vaezi, H., (2023), Essential norm of generalized integral type operator from $Q_K(p,q)$ to Zygmund Spaces, Filomat, 37(16), pp. 5273-5282.
  • Pommerenke, C., (1977), Schlichte Funktionen und analytische Funktionen von Beschrankter mittlerer Oszillation, Comment. Math. Helv., 52, pp. 591-602.
  • Roan, R., (1978), Composition operators on the space of functions with $H^p$-derivative, Houston J. Math., 4, pp. 423-438.
  • Xie, H., Liu, J. and Wu, Y., (2021), Weighted composition operators on spaces of functions with derivative in a Bergman space, Ann. Funct. Anal., 12(24), article number 24.
  • Xie, H., Liu, J. and Ponnusamy, S., (2023), Volterra-type operators on the minimal Möbius-invariant space, Canad. Math. Bull., 66(2), pp. 509-524
  • Ye, S. and Zhuo, Z., (2013), Weighted composition operators from Hardy to Zygmund type spaces, Abstr. Appl. Anal. 2013, Article ID 365286.
  • Zhu, X., (2012), An integral-type operator from $H^{\infty}$ to Zygmund-type spaces, Bull. Malays. Math. Sci. Soc., 35, pp. 679-686.

Year 2025, Volume: 15 Issue: 9, 2229 - 2238, 01.09.2025

Abstract

References

  • Abkar, A. and Babaei, A., (2024), Composition-Differentiation Operators on Derivative Hardy Spaces, J. Math., 2024, Article ID 8222237, 6 pages.
  • Al-Rawashdeh, W., (2024), Volterra-composition operators acting on $S^p$ spaces and weighted Zygmund spaces, Eur. J. Pure Appl. Math., 17(2), pp. 931-944.
  • Aleman, A. and Siskakkis, A. G., (1995), An integral operator on $H^p$, Complex Variables, Theory and Application: An International Journal 28, pp. 149-158.
  • Aleman, A. and Siskakkis, A. G., (1997), Integral operators on Bergman spaces, Indiana U. Math. J., 46, pp. 337-356.
  • Alighadr, A., Vaezi, H. and Hassanlou, M., (2022), Essential norm of the generalized integration operator from Zygmund space into weighted Dirichlet type space, Sahand Commun. Math. Anal., 19(2), pp. 33-47.
  • Contreras M. D. and Hernandez-Diaz, A.G., (2004), Weighted composition operators on spaces of functions with derivative in a Hardy space, J. Oper. Theory, 52, pp. 173-184.
  • Cowen, C. C. and MacCluer B. D., (1995), Composition operators on spaces of analytic functions, Studies in Advanced Mathematics. CRC Press, Boca Raton.
  • Duren P., (1973), Theory of $H^p$ spaces, Academic Press, New York.
  • Hassanlou M. and Abbasi E., (2023), Weighted composition, Volterra and integral operators on Hardy Zygmund-type spaces, J. Math. Ext., 17(8), pp. 1-11.
  • Hassanlou M., Abbasi E. and Nasresfahani, S., (2023), n-th derivative Hardy spaces and weighted differentiation composition operators, Iran. J. Sci., 47(4), pp. 1351-1358.
  • Hu, N., (2021), Weighted composition operators from derivative Hardy spaces into n-th weighted-type spaces, J. Math., 2021, Article ID 4398397, 8 pages.
  • Li, S. and Stevic, S., (2008), Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338, pp. 1282-1295
  • Liu, J., Lin, Q. and Wu, Y., (2018), Volterra type operators on $S^p (\mathbb{D})$ spaces, J. Math. Anal. Appl., 461, pp. 1100-1114.
  • MacCluer, B. D., (1987), Composition operators on $S^p$, Houston J. Math., 13, pp. 245-254.
  • Manavi, A., Hassanlou M. and Vaezi, H., (2023), Essential norm of generalized integral type operator from $Q_K(p,q)$ to Zygmund Spaces, Filomat, 37(16), pp. 5273-5282.
  • Pommerenke, C., (1977), Schlichte Funktionen und analytische Funktionen von Beschrankter mittlerer Oszillation, Comment. Math. Helv., 52, pp. 591-602.
  • Roan, R., (1978), Composition operators on the space of functions with $H^p$-derivative, Houston J. Math., 4, pp. 423-438.
  • Xie, H., Liu, J. and Wu, Y., (2021), Weighted composition operators on spaces of functions with derivative in a Bergman space, Ann. Funct. Anal., 12(24), article number 24.
  • Xie, H., Liu, J. and Ponnusamy, S., (2023), Volterra-type operators on the minimal Möbius-invariant space, Canad. Math. Bull., 66(2), pp. 509-524
  • Ye, S. and Zhuo, Z., (2013), Weighted composition operators from Hardy to Zygmund type spaces, Abstr. Appl. Anal. 2013, Article ID 365286.
  • Zhu, X., (2012), An integral-type operator from $H^{\infty}$ to Zygmund-type spaces, Bull. Malays. Math. Sci. Soc., 35, pp. 679-686.
There are 21 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis, Real and Complex Functions (Incl. Several Variables)
Journal Section Research Articles
Authors

Mina Safarzadeh This is me 0009-0007-5418-6831

Mostafa Hassanlou 0000-0002-9213-2574

Mina Ettefagh This is me 0000-0002-8611-9111

Zohreh Zeinalabedini Charandabi 0000-0002-7720-5501

Publication Date September 1, 2025
Submission Date August 27, 2024
Acceptance Date January 18, 2025
Published in Issue Year 2025 Volume: 15 Issue: 9

Cite