Research Article
BibTex RIS Cite

Year 2025, Volume: 15 Issue: 9, 2352 - 2365, 01.09.2025

Abstract

References

  • Reference1 Al-shami, T. M. and Mhemdi, A., (2023), Generalized frame for orthopair fuzzy sets: (m, n)-fuzzy sets and their applications to multi-criteria decision-making methods, Information, 14(1).
  • Reference2 Anthony, J. M. and Sherwood, H., (1979), Fuzzy groups redefined, Journal of Mathematical Analysis and Applications, 69(1), pp. 124-130.
  • Reference3 Anthony, J. M. and Sherwood, H., (1982), A characterization of fuzzy subgroups, Fuzzy Sets and Systems, 7(3), pp. 297-305.
  • Reference4 Atanassov, K. T., (1999), Intuitionistic Fuzzy Sets: Theory and Applications, Physica, Heidelberg.
  • Reference5 Bhunia, S. and Ghorai, G., (2024), An approach to Lagrange’s theorem in Pythagorean fuzzy subgroups, Kragujevac Journal of Mathematics, 48(6), pp. 893-906.
  • Reference6 Bhunia, S., Ghorai, G. and Xin, Q., (2021), On the characterization of Pythagorean fuzzy subgroups, AIMS Mathematics, 6(1), pp. 962-978.
  • Reference7 Biswas, R., (1989), Intuitionistic fuzzy subgroups, Mathematical Forum, 10, pp. 37-46.
  • Reference8 Choudhury, F. P., Chakraborty, A. B. and Khare, S. S., (1988), A note on fuzzy subgroups and fuzzy homomorphism, Journal of Mathematical Analysis and Applications, 131(2), pp. 537-553.
  • Reference9 Das, P. S., (1981), Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applica- tions, 84(1), pp. 264-269.
  • Reference10 Gallian, J. A., (2017), Contemporary Abstract Algebra, Cengage Learning, Boston.
  • Reference11 Hur, K., Jang, S. Y. and Kang, H. W. (2004), Intuitionistic fuzzy subgroups and cosets, Honam Mathematical Journal, 26(1), pp. 17-41.
  • Reference12 Hur, K., Kang, H. W. and Song, H. K., (2003), Intuitionistic fuzzy subgroups and subrings, Honam Mathematical Journal, 25(1), pp. 19-41.
  • Reference13 Kim, J. G., (1994), Fuzzy orders relative to fuzzy subgroups, Information Sciences, 80(3-4), pp. 341- 348.
  • Reference14 Kim, J. G., (1994), Orders of fuzzy subgroups and fuzzy p-subgroups, Fuzzy Sets and Systems, 61(2), pp. 225-230.
  • Reference15 Mukherjee, N. P. and Bhattacharya, P., (1984), Fuzzy normal subgroups and fuzzy cosets, Information Sciences, 34(3), pp. 225-239.
  • Reference16 Mukherjee, N. P. and Bhattacharya, P., (1986), Fuzzy groups: Some group-theoretic analogs, Infor- mation Sciences, 39(3), pp. 247-267.
  • Reference17 Razaq, A., Alhamzi, G., Razzaque, A. and Garg, H., (2022), A comprehensive study on Pythagorean fuzzy normal subgroups and Pythagorean fuzzy isomorphisms, Symmetry, 14(10), p. 2084.
  • Reference18 Razzaque, A. and Razaq, A., (2022), On q-rung orthopair fuzzy subgroups, Journal of Function Spaces, p. 8196638.
  • Reference19 Rosenfeld, A., (1971), Fuzzy groups, Journal of Mathematical Analysis and Applications, 35(3), pp. 512-517.
  • Reference20 Yager, R. R., (2013), Pythagorean fuzzy subsets, in 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 57-61.
  • Reference21 Yager, R. R., (2017), Generalized orthopair fuzzy sets, IEEE Transactions on Fuzzy Systems, 25(5), pp. 1222-1230.
  • Reference22 Zadeh, L. A., (1965), Fuzzy sets, Information and Control, 8(3), pp. 338-353.

ON (p, q)-FUZZY SUBGROUPS

Year 2025, Volume: 15 Issue: 9, 2352 - 2365, 01.09.2025

Abstract

The (p, q)-fuzzy sets, which extend the concept of q-rung orthopair fuzzy sets, provide a broader framework for representing uncertainty. This article introduces the concept of (p, q)-fuzzy subgroups of finite groups and examines their fundamental properties. Additionally, it develops and analyzes key concepts such as (p, q)-fuzzy cosets, (p, q)-fuzzy normal subgroups, and (p, q)-fuzzy level subgroups, thereby providing deeper insights into the structure of (p, q)-fuzzy subgroups.

References

  • Reference1 Al-shami, T. M. and Mhemdi, A., (2023), Generalized frame for orthopair fuzzy sets: (m, n)-fuzzy sets and their applications to multi-criteria decision-making methods, Information, 14(1).
  • Reference2 Anthony, J. M. and Sherwood, H., (1979), Fuzzy groups redefined, Journal of Mathematical Analysis and Applications, 69(1), pp. 124-130.
  • Reference3 Anthony, J. M. and Sherwood, H., (1982), A characterization of fuzzy subgroups, Fuzzy Sets and Systems, 7(3), pp. 297-305.
  • Reference4 Atanassov, K. T., (1999), Intuitionistic Fuzzy Sets: Theory and Applications, Physica, Heidelberg.
  • Reference5 Bhunia, S. and Ghorai, G., (2024), An approach to Lagrange’s theorem in Pythagorean fuzzy subgroups, Kragujevac Journal of Mathematics, 48(6), pp. 893-906.
  • Reference6 Bhunia, S., Ghorai, G. and Xin, Q., (2021), On the characterization of Pythagorean fuzzy subgroups, AIMS Mathematics, 6(1), pp. 962-978.
  • Reference7 Biswas, R., (1989), Intuitionistic fuzzy subgroups, Mathematical Forum, 10, pp. 37-46.
  • Reference8 Choudhury, F. P., Chakraborty, A. B. and Khare, S. S., (1988), A note on fuzzy subgroups and fuzzy homomorphism, Journal of Mathematical Analysis and Applications, 131(2), pp. 537-553.
  • Reference9 Das, P. S., (1981), Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applica- tions, 84(1), pp. 264-269.
  • Reference10 Gallian, J. A., (2017), Contemporary Abstract Algebra, Cengage Learning, Boston.
  • Reference11 Hur, K., Jang, S. Y. and Kang, H. W. (2004), Intuitionistic fuzzy subgroups and cosets, Honam Mathematical Journal, 26(1), pp. 17-41.
  • Reference12 Hur, K., Kang, H. W. and Song, H. K., (2003), Intuitionistic fuzzy subgroups and subrings, Honam Mathematical Journal, 25(1), pp. 19-41.
  • Reference13 Kim, J. G., (1994), Fuzzy orders relative to fuzzy subgroups, Information Sciences, 80(3-4), pp. 341- 348.
  • Reference14 Kim, J. G., (1994), Orders of fuzzy subgroups and fuzzy p-subgroups, Fuzzy Sets and Systems, 61(2), pp. 225-230.
  • Reference15 Mukherjee, N. P. and Bhattacharya, P., (1984), Fuzzy normal subgroups and fuzzy cosets, Information Sciences, 34(3), pp. 225-239.
  • Reference16 Mukherjee, N. P. and Bhattacharya, P., (1986), Fuzzy groups: Some group-theoretic analogs, Infor- mation Sciences, 39(3), pp. 247-267.
  • Reference17 Razaq, A., Alhamzi, G., Razzaque, A. and Garg, H., (2022), A comprehensive study on Pythagorean fuzzy normal subgroups and Pythagorean fuzzy isomorphisms, Symmetry, 14(10), p. 2084.
  • Reference18 Razzaque, A. and Razaq, A., (2022), On q-rung orthopair fuzzy subgroups, Journal of Function Spaces, p. 8196638.
  • Reference19 Rosenfeld, A., (1971), Fuzzy groups, Journal of Mathematical Analysis and Applications, 35(3), pp. 512-517.
  • Reference20 Yager, R. R., (2013), Pythagorean fuzzy subsets, in 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 57-61.
  • Reference21 Yager, R. R., (2017), Generalized orthopair fuzzy sets, IEEE Transactions on Fuzzy Systems, 25(5), pp. 1222-1230.
  • Reference22 Zadeh, L. A., (1965), Fuzzy sets, Information and Control, 8(3), pp. 338-353.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Logic, Set Theory, Lattices and Universal Algebra, Real and Complex Functions (Incl. Several Variables)
Journal Section Research Articles
Authors

Aparna Sivadas This is me

Sunil Jacob John 0000-0002-6333-2884

Athira T M

Publication Date September 1, 2025
Submission Date August 12, 2024
Acceptance Date October 31, 2024
Published in Issue Year 2025 Volume: 15 Issue: 9

Cite