EXTENSIVE EXPLORATION OF MULTI-TERM HYBRID FUNCTIONAL EQUATION VIA HYBRID DIFFERENTIAL FEEDBACK CONTROL
Year 2025,
Volume: 15 Issue: 10, 2421 - 2438, 01.10.2025
Ahmed M.a. El-sayed
,
Sh. M Al-ıssa
,
H. H. G. Hashem
I. H. Kaddoura
A. A. Najdi
Abstract
This paper investigates the existence of solutions for a multidimensional hybrid functional equation with multiple delays, incorporating differential feedback control. The focus is on finding well-defined, continuous, and bounded solutions on the semi-infinite interval. To establish the existence of these solutions, we employ measures of noncompactness associated with a specified modulus of continuity within the space \( BC(\mathbb{R}_{+}) \). Furthermore, we derive sufficient conditions to ensure the asymptotic stability of the solutions to this integral equation. An illustrative example is provided to demonstrate the applicability of the theoretical results.
References
-
Bana´s, J., Chlebowicz, A., Wo´s, W., (2020), On measures of noncompactness in the space of functions defined on the half-axis with values in a Banach space, J. Math. Anal. Appl., 489, 124187.
-
Bana´s, J., Chlebowicz, A., (2019), On solutions of an infinite system of nonlinear integral equations on the real half-axis, Banach J. Math. Anal., 13, pp. 944–968.
-
Bana´s, J., O’Regan, D., (2008), On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, Journal of Mathematical Analysis and Applications, 345, pp.573–582.
-
Bana´s, J., Rzepka, B., (2003), On existence and asymptotic stability of solutions of nonlinear integral equation, Math. Anal. Appl., 284, pp. 165–173.
-
Bana´s, J., Rzepka, B., (2003), An application of a Measure of Noncompactness in the study of asymptotic stability, Applied Mathematics Letters, 16, pp. 1–6.
-
Bana´s, J., (1984), On measures of noncompactness in Banach spaces and their applications to integral equations, Dissertationes Mathematicae, 234, pp. 1–58.
-
El-Sayed, A. M. A., Hashem, H. H. G., Al-Issa, S. M., (2023), New Aspects on the Solvability of a Multidimensional Functional Integral Equation with Multivalued Feedback Control, Axioms, 12 (653). https://doi.org/10.3390/axioms12070653.
-
Hashem, H. H. G., El-Sayed, A. M. A., Al-Issa, S. M., (2023), Investigating Asymptotic Stability for Hybrid Cubic Integral Inclusion with Fractal Feedback Control on the Real Half-Axis, Fractal Fract.,
7 (449). https://doi.org/10.3390/fractalfract7060449.
-
Darbo, G., (1955), Punti in transformazationi a condominio non compatto, Rend. Sem. Math. Univ. Padova, 4, pp. 84–92.
-
Chen, F., (2006), The permanence and global attractivity of Lotka–Volterra competition system with feedback controls, Nonlinear Analysis: Real World Applications, 7, pp. 133–143.
-
Nasertayoob, P., (2018), Solvability and asymptotic stability of a class of nonlinear functional-integral equations with feedback control, Commun. Nonlinear Anal., 5, pp. 19–27.
-
Nasertayoob, P., Mansour Vaezpour, S., (2013), Positive periodic solution for a nonlinear neutral delay population equation with feedback control, J. Nonlinear Sci. Appl., 6, pp. 152–161.
-
Alsaadi, A., Cichon, M., Metwali, M. M. A., (2022), Integrable solutions for Gripenberg-type equations with m-product of fractional operators and applications to initial value problems, Mathematics, 10
(1172).
-
Hashem, H. H. G., Zaki, M. S., (2013), Cartheodory theorem for quadratic integral equations of Erd´elyi–Kober type, Journal of Fractional Calculus and Applications, 4, pp. 1–8.
-
Metwali, M. M. A., Mishra, V. N., (2023), On the measure of noncompactness in Lp(R+) and applications to a product of n-integral equations, Turkish Journal of Mathematics, 47, pp. 372–386.
-
Brestovanska, E., Medveˇd, M., (2012), Fixed point theorems of the Banach and Krasnosel’skii type for mappings on m-tuple Cartesian product of Banach algebras and systems of generalized
-
Gripenberg’s equations, Acta Universitatis Palackianae Olomucensis Facultas Rerum Naturalium Mathematica, 51, pp. 27–39.
-
Darbo, G., (1955), Punti in transformazationi a condominio non compatto, Rend. Sem. Math. Univ. Padova, 4, pp. 84–92.