Research Article
BibTex RIS Cite

ON THE FUNDAMENTAL THEOREMS OF $(\alpha,\beta)$-PYTHAGOREAN FUZZY IDEALS OF RINGS

Year 2025, Volume: 15 Issue: 10, 2530 - 2542, 01.10.2025

Abstract

An $(\alpha,\beta)$-Pythagorean fuzzy set is a modern approach to handling ambiguity. This article represents the perception of an $(\alpha,\beta)$-Pythagorean fuzzy coset of any $(\alpha,\beta)$-Pythagorean fuzzy ideal of rings. We demonstrate several characteristics of $(\alpha,\beta)$-Pythagorean fuzzy cosets. Moreover, we explain the $(\alpha,\beta)$-Pythagorean fuzzy quotient ring of $(\alpha,\beta)$-Pythagorean fuzzy ideals of any ring. Furthermore, we present the isomorphism theorems of $(\alpha,\beta)$-Pythagorean fuzzy ideals.

References

  • Reference1 Alghazzawi, D., Hanoon, W. H., Gulzar, M., Abbas, G. and Kausar, N., (2021), Certain properties of ω-Q-fuzzy subrings, Indonesian Journal of Electrical Engineering and Computer Science, 21(2), pp. 822-828.
  • Reference2 Atanassov, K., (1983), Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Sci. - Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulg.). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1-S6.
  • Reference3 Banerjee, B. and Basnet, D., (2003), Intuitionistic fuzzy subrings and ideals, Journal of Fuzzy Mathematics, 11(1), pp. 139-155.
  • Reference4 Bhunia, S. and Ghorai, G., (2021), A New Approach to Fuzzy Group Theory Using (α, β)-Pythagorean Fuzzy Sets, Songklanakarin Journal of Science and Technology, 43(1), pp. 295-306.
  • Reference5 Bhunia, S., Ghorai, G. and Xin, Q., (2021), On the fuzzification of Lagrange’s theorem in (α, β)-Pythagorean fuzzy environment, AIMS Mathematics, 6(9), pp. 9290-9308.
  • Reference6 Bhunia, S., Ghorai, G., Xin, Q. and Gulzar, M., (2022), On the Algebraic Attributes of (α, β)-Pythagorean Fuzzy Subrings and (α, β)-Pythagorean Fuzzy Ideals of Rings, IEEE Access, 10, pp. 11048-11056.
  • Reference7 Bhunia, S. and Ghorai, G., (2024), An approach to Lagrange’s theorem in Pythagorean fuzzy subgroups, Kragujevac Journal of Mathematics, 48(6), pp. 893-906.
  • Reference8 Ceven, Y., (2012), N-Ideals of Rings, International Journal of Algebra, 6(25), pp. 1227-1232.
  • Reference9 Dixit, V. N., Kumar, R. and Ajmal, N., (1992), On fuzzy rings, Fuzzy Sets and Systems, 49(2), pp. 205-213.
  • Reference10 Gulzar, M., Alghazzawi, D., Mateen, M. H. and Premkumar, M., (2021), On some characterization of Q-complex fuzzy sub-rings, Journal of Mathematics and Comuter Science, 22(3), pp. 295-305.
  • Reference11 Hur, K., Kang, H. and Song, H., (2003), Intuitionistic fuzzy subgroups and subrings, Honam Mathematical Journal, 25(1), pp. 19-41.
  • Reference12 Hayat, K., Mahmood, T. and Cao, B, Y., (2017), On Bipolar Anti Fuzzy h-ideals in Hemi-rings, Fuzzy Information and Engineering, 9(1), pp. 1-19.
  • Reference13 Kim, S. D. and Kim, H. S., (1996), S. D. Kim and H. S. Kim, Bulletin of Korean Mathematical Society, 33(4), pp. 593-601.
  • Reference14 Liu, W., (1982), Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8(2), pp. 133-139.
  • Reference15 Liu, W., (1983), Operations On Fuzzy Ideals, Fuzzy Sets and Systems, 11(1), pp. 31-41.
  • Reference16 Mehmood, F., Shi, F. G. and Hayat, K., (2020), A new approach to the fuzzification of rings, Journal of Nonlinear and Convex Analysis, 21(12), pp. 2637-2646.
  • Reference17 Mehmood, F., Shi, F. G. and Hayat, K., (2020), The Homomorphism Theorems of M-Hazy Rings and Their Induced Fuzzifying Convexities, Mathematics, 8(3), pp. 411.
  • Reference18 Noether, E., (1921), Idealtheorie in Ringbereichen, Mathematische Annalen, 83(1), pp. 24-66.
  • Reference19 Peng, X. and Yang, Y., (2015), Some Results for Pythagorean Fuzzy Sets, International Journal of Intelligent System, 30(11), pp. 1133-1160.
  • Reference20 Rosenfeld, A., (1971), Fuzzy Groups, Journal of Mathematical Analysis and Application, 35(3), pp. 512-517.
  • Reference21 Ren, Y., (1985), Fuzzy ideals and quotient rings, Journal of Fuzzy Mathematics, 4(1), pp. 19-26.
  • Reference22 Yager, R. R., (2013), Pythagorean Fuzzy Subsets, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), DOI: 10.1109/IFSA-NAFIPS.2013.6608375, pp. 57-61.
  • Reference23 Zadeh, L., (1965), Fuzzy sets, Information and Control, 8(3), pp. 338-353.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Logic, Set Theory, Lattices and Universal Algebra
Journal Section Research Articles
Authors

Supriya Bhunia

Ganesh Ghorai

Publication Date October 1, 2025
Submission Date October 4, 2024
Acceptance Date January 13, 2025
Published in Issue Year 2025 Volume: 15 Issue: 10

Cite