THE $k$-BINOMIAL AND CATALAN TRANSFORMS OF THE $k$-LEONARDO NUMBERS
Year 2025,
Volume: 15 Issue: 11, 2652 - 2663, 03.11.2025
Kalika Prasad
,
Munesh Kumari
,
Hrishikesh Mahato
Abstract
In this paper, we investigate the binomial transform and the Catalan transform of the $k$-Leonardo numbers and examine the new integer sequences. We apply the $k$-binomial, rising $k$-binomial, and falling $k$-binomial transforms to the $k$-Leonardo sequences. Further, we study the associated generating and exponential generating functions for these transforms. Finally, we implement the Hankel transform on the Catalan transforms of the $k$-Leonardo numbers to obtain the determinant of Hankel sub-matrices.
Thanks
The authors are thankful to the anonymous reviewers for their advice and fruitful corrections.
References
-
Alp, Y. and Koçer, E. G., (2021), Some properties of Leonardo numbers, Konuralp Journal of Mathematics, 9(1), pp. 183–189.
-
Alp, Y. and Kocer, E. G., (2021), Hybrid Leonardo numbers, Chaos, Solitons & Fractals, 150, 111128.
-
Barry, P., (2005), A Catalan transform and related transformations on integer sequences, Journal of Integer Sequences, 8.
-
Catarino, P. M. and Borges, A., (2019), On leonardo numbers, Acta Mathematica Universitatis Comenianae, 89(1), pp. 75–86.
-
Cvetkovic, A., Rajkovic, P., and Ivkovic, M., (2002), Catalan numbers, the Hankel transform and Fibonacci numbers, J. Integer Seq, 5(1), pp. 1–8.
-
Falcon, S. and Plaza, A., (2009), Binomial transforms of the k-Fibonacci sequence, International Journal of Nonlinear Sciences and Numerical Simulation, 10(11-12), pp. 1527–1538.
-
Falcon, S. and Plaza, A., (2007), The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons & Fractals, 33(1), pp. 38–49.
-
Falcon, S., (2013), Catalan transform of the k-Fibonacci sequence, Communications of the Korean Mathematical Society, 28(4), pp. 827–832.
-
Falcon, S., (2019), Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications, 10(3), pp. 643–651.
-
Kuhapatanaku, K. and Chobsorn, J., (2022), On the generalized Leonardo numbers, Integers, 22(A48), pp. 1–7.
-
Kumari, M., Prasad, K., Mahato, H., and Catarino, P. M. M. C., (2026), On The Generalized Leonardo Quaternions and Associated Spinors, Kragujevac Journal of Mathematics, 50(3), pp. 425–438.
-
Layman, J. W., (2001), The Hankel transform and some of its properties, J. Integer Seq, 4(1), pp. 1–11.
-
Özimamoğlu, H., (2023), A new generalization of Leonardo hybrid numbers with q-integers, Indian Journal of Pure and Applied Mathematics, pp. 1–10.
-
Patra, A. and Kaabar, M. K., (2021), Catalan Transform of-Balancing Sequences, International Journal of Mathematics and Mathematical Sciences, 2021.
-
Prasad, K., Mahato, H., and Kumari, M., (2022), On the generalized k-Horadam like sequences, Algebra, Analysis and Associated Topics (Trends in Mathematics), pp. 11-26 .
-
Prasad, K., Mahato, H., Kumari, M., and Mohanty, R., (2024), On the generalized Leonardo pisano octonions, National Academy Science Letters, 47, pp. 579–585. DOI: 10.1007/s40009-023-01291-2
-
Prasad, K. and Kumari, M., (2024), The Leonardo polynomials and their algebraic properties, Proceedings of the Indian National Science Academy, pp. 1–10. DOI: 10.1007/s43538-024-00348-0
-
Prasad, K. and Kumari, M., (2025), The generalized k-Leonardo numbers: a non-homogeneous generalization of the Fibonacci numbers, Palestine Journal of Mathematics, pp. 1-14 (accepted).
-
Rajkovic, P. M., Petkovic, M. D., and Barry, P., (2007), The Hankel transform of the sum of consecutive generalized Catalan numbers, Integral Transforms and Special Functions, 18(4), pp. 285–296.
-
Soykan, Y., (2021), Generalized Leonardo numbers, Journal of Progressive Research in Mathematics, 18(4), pp. 58–84.
-
Soykan, Y., Taşdemir, E., and Göcen, M., (2022), Binomial transform of the generalized third-order Jacobsthal sequence, Asian-European Journal of Mathematics, 15(12), 2250224.
-
Spivey, M. Z. and Steil, L. L., (2006), The k-binomial transforms and the Hankel transform, J. Integer Seq, 9(1), 19.
-
Tastan, M. and Özkan, E., (2021), Catalan transform of the k-Pell, k-Pell-Lucas and modified k-Pell sequence, Notes on Number Theory and Discrete Mathematics, 27(1).