Research Article
BibTex RIS Cite

THE $k$-BINOMIAL AND CATALAN TRANSFORMS OF THE $k$-LEONARDO NUMBERS

Year 2025, Volume: 15 Issue: 11, 2652 - 2663, 03.11.2025

Abstract

In this paper, we investigate the binomial transform and the Catalan transform of the $k$-Leonardo numbers and examine the new integer sequences. We apply the $k$-binomial, rising $k$-binomial, and falling $k$-binomial transforms to the $k$-Leonardo sequences. Further, we study the associated generating and exponential generating functions for these transforms. Finally, we implement the Hankel transform on the Catalan transforms of the $k$-Leonardo numbers to obtain the determinant of Hankel sub-matrices.

Thanks

The authors are thankful to the anonymous reviewers for their advice and fruitful corrections.

References

  • Alp, Y. and Koçer, E. G., (2021), Some properties of Leonardo numbers, Konuralp Journal of Mathematics, 9(1), pp. 183–189.
  • Alp, Y. and Kocer, E. G., (2021), Hybrid Leonardo numbers, Chaos, Solitons & Fractals, 150, 111128.
  • Barry, P., (2005), A Catalan transform and related transformations on integer sequences, Journal of Integer Sequences, 8.
  • Catarino, P. M. and Borges, A., (2019), On leonardo numbers, Acta Mathematica Universitatis Comenianae, 89(1), pp. 75–86.
  • Cvetkovic, A., Rajkovic, P., and Ivkovic, M., (2002), Catalan numbers, the Hankel transform and Fibonacci numbers, J. Integer Seq, 5(1), pp. 1–8.
  • Falcon, S. and Plaza, A., (2009), Binomial transforms of the k-Fibonacci sequence, International Journal of Nonlinear Sciences and Numerical Simulation, 10(11-12), pp. 1527–1538.
  • Falcon, S. and Plaza, A., (2007), The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons & Fractals, 33(1), pp. 38–49.
  • Falcon, S., (2013), Catalan transform of the k-Fibonacci sequence, Communications of the Korean Mathematical Society, 28(4), pp. 827–832.
  • Falcon, S., (2019), Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications, 10(3), pp. 643–651.
  • Kuhapatanaku, K. and Chobsorn, J., (2022), On the generalized Leonardo numbers, Integers, 22(A48), pp. 1–7.
  • Kumari, M., Prasad, K., Mahato, H., and Catarino, P. M. M. C., (2026), On The Generalized Leonardo Quaternions and Associated Spinors, Kragujevac Journal of Mathematics, 50(3), pp. 425–438.
  • Layman, J. W., (2001), The Hankel transform and some of its properties, J. Integer Seq, 4(1), pp. 1–11.
  • Özimamoğlu, H., (2023), A new generalization of Leonardo hybrid numbers with q-integers, Indian Journal of Pure and Applied Mathematics, pp. 1–10.
  • Patra, A. and Kaabar, M. K., (2021), Catalan Transform of-Balancing Sequences, International Journal of Mathematics and Mathematical Sciences, 2021.
  • Prasad, K., Mahato, H., and Kumari, M., (2022), On the generalized k-Horadam like sequences, Algebra, Analysis and Associated Topics (Trends in Mathematics), pp. 11-26 .
  • Prasad, K., Mahato, H., Kumari, M., and Mohanty, R., (2024), On the generalized Leonardo pisano octonions, National Academy Science Letters, 47, pp. 579–585. DOI: 10.1007/s40009-023-01291-2
  • Prasad, K. and Kumari, M., (2024), The Leonardo polynomials and their algebraic properties, Proceedings of the Indian National Science Academy, pp. 1–10. DOI: 10.1007/s43538-024-00348-0
  • Prasad, K. and Kumari, M., (2025), The generalized k-Leonardo numbers: a non-homogeneous generalization of the Fibonacci numbers, Palestine Journal of Mathematics, pp. 1-14 (accepted).
  • Rajkovic, P. M., Petkovic, M. D., and Barry, P., (2007), The Hankel transform of the sum of consecutive generalized Catalan numbers, Integral Transforms and Special Functions, 18(4), pp. 285–296.
  • Soykan, Y., (2021), Generalized Leonardo numbers, Journal of Progressive Research in Mathematics, 18(4), pp. 58–84.
  • Soykan, Y., Taşdemir, E., and Göcen, M., (2022), Binomial transform of the generalized third-order Jacobsthal sequence, Asian-European Journal of Mathematics, 15(12), 2250224.
  • Spivey, M. Z. and Steil, L. L., (2006), The k-binomial transforms and the Hankel transform, J. Integer Seq, 9(1), 19.
  • Tastan, M. and Özkan, E., (2021), Catalan transform of the k-Pell, k-Pell-Lucas and modified k-Pell sequence, Notes on Number Theory and Discrete Mathematics, 27(1).
There are 23 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Combinatorics and Discrete Mathematics (Excl. Physical Combinatorics)
Journal Section Research Articles
Authors

Kalika Prasad 0000-0002-3653-5854

Munesh Kumari 0000-0002-6541-0284

Hrishikesh Mahato 0000-0002-3769-0653

Publication Date November 3, 2025
Submission Date December 12, 2024
Acceptance Date March 31, 2025
Published in Issue Year 2025 Volume: 15 Issue: 11

Cite