Review
BibTex RIS Cite

Einkorn buğdayın moleküler yapısı

Year 2021, Volume: 3 Issue: 2, 57 - 62, 23.05.2021

Abstract

Buğday grubu olarak adlandırılan triticum ve Aegilops, Gramineae ailesinin Triticeae kabilesine aittir. Morfolojik belirteçler, biyokimyasal belirteçler ve DNA belirteçleri, bitki genetik kaynaklarının tanımlanmasında yoğun olarak kullanılır. Özellikle morfolojik belirteçler, sınırlı sayıda tanımlama çalışmalarında sınırlıdır ve çevresel koşullardan etkilenebilir. Aynı şekilde, biyokimyasal belirteçlerin düşük düzeyde polimorfizmi kullanımlarını sınırlar. Bu rapor, Einkorn buğdayın moleküler yapısını araştırmayı amaçlamaktadır. Rapor, girişten sonra menşei Einkorn buğdayı tartışılacaktır, daha sonra genetik çeşitliliğin kısa bir özeti değerlendirilir. Ayrıca, genetik dönüşüm ve moleküler yapı, konu ile ilgili az sayıda geçirgen çalışmayı değerlendirilerek tartışılacaktır.

References

  • Alvarez, J. B., Moral, A., and Martín, L. M. (2006). Polymorphism and genetic diversity for the seed storage proteins in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum). Genetic Resources and Crop Evolution, 53(5), 1061-1067.
  • Bar-Yosef, O. (2002). The upper paleolithic revolution. Annual Review of Anthropology, 31(1), 363-393.
  • Brandolini, A., Hidalgo, A., and Plizzari, L. (2013). Phenotypic variation of a Triticum monococcum L. core collection. In European Plant Genetic Resources Conference (pp. 91-91). EUCARPIA.
  • Cao, W., Scoles, G., Hucl, P., & Chibbar, R. N. (1999). The use of RAPD analysis to classify Triticum accessions. Theoretical and Applied genetics, 98(3-4), 602-607.
  • Castagna, R., Borghi, B., Di Fonzo, N., Heun, M., and Salamini, F. (1995). Yield and related traits of einkorn (T. monococcum ssp. monococcum) in different environments. European Journal of Agronomy, 4(3), 371-378.
  • Chabane, K., Barker, J., Karp, A., & Valkoun, J. (1999). Evaluation of genetic diversity in diploid wheat: Triticum urartu using AFLP markers. Al Awamia (December), 100, 9-18.
  • Davies, M. S., and Hillman, G. C. (1990). Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. Journal of world prehistory, 4(2), 157-222.
  • Demirel, F. (2020) Bazı Siyez Buğdaylarının ISSR Markörleri ile Karakterizasyonu. Journal of Agriculture, 3(2), 33-39.
  • Empilli, S., Castagna, R., and Brandolini, A. (2000). Morpho-agronomic variability of the diploid wheat Triticum monococcum L. Plant Genetic Resources Newsletter, 36-40.
  • Feldman, M., Horowitz, A., and Anikster, Y. (1988). Utilization of biodiversity from in situ reserves, with special reference to wild wheat and barley. Biodiversity and Wheat Improvement, 21, 311-323.
  • Golovnina, K. A., Kondratenko, E. Y., Blinov, A. G., and Goncharov, N. P. (2010). Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats. BMC Plant Biology, 10(1), 168.
  • Gülbitti-Onarici, S. E. L. M. A., Sümer, S., and Özcan, S. (2007). Determination of phylogenetic relationships between some wild wheat species using amplified fragment length polymorphism (AFLP) markers. Botanical Journal of the Linnean Society, 153(1), 67-72.
  • Guzmán, C., Caballero, L., and Alvarez, J. B. (2009). Variation in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum) as determined by morphological traits and waxy proteins. Genetic resources and crop evolution, 56(5), 601-604.
  • Guzy, M. R., Ehdaie, B., and Waines, J. G. (1989). Yield and its components in diploid, tetraploid and hexaploid wheats in diverse environments. Annals of Botany, 64(6), 635-642.
  • Heun, M., Schäfer-Pregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B., and Salamini, F. (1997). Site of einkorn wheat domestication identified by DNA fingerprinting. Science, 278(5341), 1312-1314.
  • Jones, M. K., Allaby, R. G., and Brown, T. A. (1998). Wheat domestication. Science, 279(5349), 302-302.
  • Karahan, İbrahim and Sesiz, Uğur and Ozkan, Hakan. (2019). Siyez Buğday Islahinda Kullanilabilecek Gen Kaynaklarinin Agromorfolojik Karakterizasyonu- (Agro-Morphological Characterization Of Genetic Sources That Can Be Used In Einkorn Wheat Breeding).
  • Kilian, B., Özkan, H., Pozzi, C., and Salamini, F. (2009). Domestication of the Triticeae in the Fertile Crescent. In Genetics and Genomics of the Triticeae (pp. 81-119). Springer, New York, NY.
  • Kilian, B., Özkan, H., Walther, A., Kohl, J., Dagan, T., Salamini, F., and Martin, W. (2007). Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Molecular Biology and Evolution, 24(12), 2657-2668.
  • Knüpffer, H. (2009). Triticeae genetic resources in ex situ genebank collections. In Genetics and Genomics of the Triticeae (pp. 31-79). Springer, New York, NY.
  • Kreuz, A., and Boenke, N. (2002). The presence of two-grained einkorn at the time of the Bandkeramik culture. Vegetation History and Archaeobotany, 11(3), 233-240.
  • Kroll, H. (1992). Einkorn from Feudvar, Vojvodina, II. What is the difference between emmer-like two-seeded einkorn and emmer?. Review of palaeobotany and palynology, 73(1-4), 181-185.
  • McCorriston, J., and Hole, F. (1991). The ecology of seasonal stress and the origins of agriculture in the Near East. American Anthropologist, 93(1), 46-69.
  • Metakovsky, E. V., and Baboev, S. K. (1992). Polymorphism and inheritance of gliadin polypeptides in T. monococcum L. Theoretical and Applied Genetics, 84(7-8), 971-978.
  • Miroshnichenko, D., Ashin, D., Pushin, A., and Dolgov, S. (2018). Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species. BMC biotechnology, 18(1), 68.
  • Örgeç, M., Verma, S. K., Şahin, G., Zencirci, N., and Gürel, E. (2021). In vitro tissue culture protocol of ancient einkorn (Triticum monococcum ssp. monococum) wheat via indirect shoot regeneration. In Vitro Cellular and Developmental Biology-Plant, 57(1), 143-151.
  • Payne, P. I., and Waines, J. G. (1987). Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theoretical and Applied Genetics, 74(1), 71-76.
  • Rodriguez‐Quijano, M., Vázquez, J. F., and Carrillo, J. M. (2004). Waxy proteins and amylose content in diploid Triticeae species with genomes A, S and D. Plant breeding, 123(3), 294-296.
  • Sharma, H. C., Waines, J. G., and Foster, K. W. (1981). Variability in Primitive and Wild Wheats for Useful Genetic Characters 1. Crop Science, 21(4), 555-559.
  • Ünlü, E. S., Bataw, S., Şen, D. A., Şahin, Y., and Zencirci, N. (2018). Identification of conserved miRNA molecules in einkorn wheat (Triticum monococcum subsp. monococcum) by using small RNA sequencing analysis. Turkish Journal of Biology, 42(6), 527-536.
  • Van Slageren, M. W. (1994). Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. and Spach) Eig (Poaceae). Wageningen, The Netherlands: Agricultural University.
  • Weiss, E., Kislev, M. E., and Hartmann, A. (2006). Autonomous cultivation before domestication. Science, 312(5780), 1608-1610.
  • Willcox, G. (2005). The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: multiple events, multiple centres. Vegetation History and Archaeobotany, 14(4), 534-541.
  • Yaman, M. H. M., and Zencirci, N. (2015). Importance of ancestral hulled wheats in healthy nutrition. Organized by, 15.
  • Zaharieva, M., and Monneveux, P. (2014). Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture. Genetic resources and crop evolution, 61(3), 677-706.
  • Zencirci, N., and Karagöz, A. (2005). Variation in wheat (Triticum spp.) landraces from different altitudes of three regions of Turkey. Genetic Resources and Crop Evolution, 52(6), 775-785.
  • Zencirci, N., Yılmaz, H., Garaybayova, N., Karagöz, A., Kilian, B., Özkan, H. and Knüpffer, H. (2018). Mirza (Hacızade) Gökgöl (1897–1981): the great explorer of wheat genetic resources in Turkey. Genetic Resources and Crop Evolution, 65(3), 693-711.
  • Zohary, D., and Hopf, M. (2000). Domestication of plants in the Old World, Oxford University Press. Ed, 3, 316.

The Molecular Structure of Einkorn Wheat (Triticum monococcum ssp. monococcum)

Year 2021, Volume: 3 Issue: 2, 57 - 62, 23.05.2021

Abstract

Triticum and Aegilops, which form wheat, belong to the Triticeae tribe in the Gramineae family. Morphological markers, biochemical markers, and molecular markers are extensively applied in the identification of plant genetic resources including wheat. Morphological markers, for their limited number and being influenced by environmental conditions and biochemical markers for their lower level of polymorphism are restricted in diversity studies. One of the first domesticated plants is einkorn wheat (Triticum monococcum ssp. monococcum). It will guarantee a consistent supply of nutritious food items suited to various stressful conditions of the climate. Unfortunately, it was only used since the Bronze Age for cultivation in the breeding of wheat. This review aims to the molecular structure of einkorn wheat based on the previous studies. 

References

  • Alvarez, J. B., Moral, A., and Martín, L. M. (2006). Polymorphism and genetic diversity for the seed storage proteins in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum). Genetic Resources and Crop Evolution, 53(5), 1061-1067.
  • Bar-Yosef, O. (2002). The upper paleolithic revolution. Annual Review of Anthropology, 31(1), 363-393.
  • Brandolini, A., Hidalgo, A., and Plizzari, L. (2013). Phenotypic variation of a Triticum monococcum L. core collection. In European Plant Genetic Resources Conference (pp. 91-91). EUCARPIA.
  • Cao, W., Scoles, G., Hucl, P., & Chibbar, R. N. (1999). The use of RAPD analysis to classify Triticum accessions. Theoretical and Applied genetics, 98(3-4), 602-607.
  • Castagna, R., Borghi, B., Di Fonzo, N., Heun, M., and Salamini, F. (1995). Yield and related traits of einkorn (T. monococcum ssp. monococcum) in different environments. European Journal of Agronomy, 4(3), 371-378.
  • Chabane, K., Barker, J., Karp, A., & Valkoun, J. (1999). Evaluation of genetic diversity in diploid wheat: Triticum urartu using AFLP markers. Al Awamia (December), 100, 9-18.
  • Davies, M. S., and Hillman, G. C. (1990). Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. Journal of world prehistory, 4(2), 157-222.
  • Demirel, F. (2020) Bazı Siyez Buğdaylarının ISSR Markörleri ile Karakterizasyonu. Journal of Agriculture, 3(2), 33-39.
  • Empilli, S., Castagna, R., and Brandolini, A. (2000). Morpho-agronomic variability of the diploid wheat Triticum monococcum L. Plant Genetic Resources Newsletter, 36-40.
  • Feldman, M., Horowitz, A., and Anikster, Y. (1988). Utilization of biodiversity from in situ reserves, with special reference to wild wheat and barley. Biodiversity and Wheat Improvement, 21, 311-323.
  • Golovnina, K. A., Kondratenko, E. Y., Blinov, A. G., and Goncharov, N. P. (2010). Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats. BMC Plant Biology, 10(1), 168.
  • Gülbitti-Onarici, S. E. L. M. A., Sümer, S., and Özcan, S. (2007). Determination of phylogenetic relationships between some wild wheat species using amplified fragment length polymorphism (AFLP) markers. Botanical Journal of the Linnean Society, 153(1), 67-72.
  • Guzmán, C., Caballero, L., and Alvarez, J. B. (2009). Variation in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum) as determined by morphological traits and waxy proteins. Genetic resources and crop evolution, 56(5), 601-604.
  • Guzy, M. R., Ehdaie, B., and Waines, J. G. (1989). Yield and its components in diploid, tetraploid and hexaploid wheats in diverse environments. Annals of Botany, 64(6), 635-642.
  • Heun, M., Schäfer-Pregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B., and Salamini, F. (1997). Site of einkorn wheat domestication identified by DNA fingerprinting. Science, 278(5341), 1312-1314.
  • Jones, M. K., Allaby, R. G., and Brown, T. A. (1998). Wheat domestication. Science, 279(5349), 302-302.
  • Karahan, İbrahim and Sesiz, Uğur and Ozkan, Hakan. (2019). Siyez Buğday Islahinda Kullanilabilecek Gen Kaynaklarinin Agromorfolojik Karakterizasyonu- (Agro-Morphological Characterization Of Genetic Sources That Can Be Used In Einkorn Wheat Breeding).
  • Kilian, B., Özkan, H., Pozzi, C., and Salamini, F. (2009). Domestication of the Triticeae in the Fertile Crescent. In Genetics and Genomics of the Triticeae (pp. 81-119). Springer, New York, NY.
  • Kilian, B., Özkan, H., Walther, A., Kohl, J., Dagan, T., Salamini, F., and Martin, W. (2007). Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Molecular Biology and Evolution, 24(12), 2657-2668.
  • Knüpffer, H. (2009). Triticeae genetic resources in ex situ genebank collections. In Genetics and Genomics of the Triticeae (pp. 31-79). Springer, New York, NY.
  • Kreuz, A., and Boenke, N. (2002). The presence of two-grained einkorn at the time of the Bandkeramik culture. Vegetation History and Archaeobotany, 11(3), 233-240.
  • Kroll, H. (1992). Einkorn from Feudvar, Vojvodina, II. What is the difference between emmer-like two-seeded einkorn and emmer?. Review of palaeobotany and palynology, 73(1-4), 181-185.
  • McCorriston, J., and Hole, F. (1991). The ecology of seasonal stress and the origins of agriculture in the Near East. American Anthropologist, 93(1), 46-69.
  • Metakovsky, E. V., and Baboev, S. K. (1992). Polymorphism and inheritance of gliadin polypeptides in T. monococcum L. Theoretical and Applied Genetics, 84(7-8), 971-978.
  • Miroshnichenko, D., Ashin, D., Pushin, A., and Dolgov, S. (2018). Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species. BMC biotechnology, 18(1), 68.
  • Örgeç, M., Verma, S. K., Şahin, G., Zencirci, N., and Gürel, E. (2021). In vitro tissue culture protocol of ancient einkorn (Triticum monococcum ssp. monococum) wheat via indirect shoot regeneration. In Vitro Cellular and Developmental Biology-Plant, 57(1), 143-151.
  • Payne, P. I., and Waines, J. G. (1987). Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theoretical and Applied Genetics, 74(1), 71-76.
  • Rodriguez‐Quijano, M., Vázquez, J. F., and Carrillo, J. M. (2004). Waxy proteins and amylose content in diploid Triticeae species with genomes A, S and D. Plant breeding, 123(3), 294-296.
  • Sharma, H. C., Waines, J. G., and Foster, K. W. (1981). Variability in Primitive and Wild Wheats for Useful Genetic Characters 1. Crop Science, 21(4), 555-559.
  • Ünlü, E. S., Bataw, S., Şen, D. A., Şahin, Y., and Zencirci, N. (2018). Identification of conserved miRNA molecules in einkorn wheat (Triticum monococcum subsp. monococcum) by using small RNA sequencing analysis. Turkish Journal of Biology, 42(6), 527-536.
  • Van Slageren, M. W. (1994). Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. and Spach) Eig (Poaceae). Wageningen, The Netherlands: Agricultural University.
  • Weiss, E., Kislev, M. E., and Hartmann, A. (2006). Autonomous cultivation before domestication. Science, 312(5780), 1608-1610.
  • Willcox, G. (2005). The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: multiple events, multiple centres. Vegetation History and Archaeobotany, 14(4), 534-541.
  • Yaman, M. H. M., and Zencirci, N. (2015). Importance of ancestral hulled wheats in healthy nutrition. Organized by, 15.
  • Zaharieva, M., and Monneveux, P. (2014). Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture. Genetic resources and crop evolution, 61(3), 677-706.
  • Zencirci, N., and Karagöz, A. (2005). Variation in wheat (Triticum spp.) landraces from different altitudes of three regions of Turkey. Genetic Resources and Crop Evolution, 52(6), 775-785.
  • Zencirci, N., Yılmaz, H., Garaybayova, N., Karagöz, A., Kilian, B., Özkan, H. and Knüpffer, H. (2018). Mirza (Hacızade) Gökgöl (1897–1981): the great explorer of wheat genetic resources in Turkey. Genetic Resources and Crop Evolution, 65(3), 693-711.
  • Zohary, D., and Hopf, M. (2000). Domestication of plants in the Old World, Oxford University Press. Ed, 3, 316.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Suliman ZOMMİTA

Nusret ZENCİRCİ 0000-0003-3460-7575

Publication Date May 23, 2021
Submission Date January 4, 2021
Published in Issue Year 2021 Volume: 3 Issue: 2

Cite

APA ZOMMİTA, S., & ZENCİRCİ, N. (2021). The Molecular Structure of Einkorn Wheat (Triticum monococcum ssp. monococcum). Uluslararası Anadolu Ziraat Mühendisliği Bilimleri Dergisi, 3(2), 57-62.