Research Article
BibTex RIS Cite

LEARNMATE: BİLİŞSEL BECERİ ÖLÇME VE GELİŞTİRMEDE OYUNLAŞTIRILMIŞ YAKLAŞIM

Year 2025, Volume: 7 Issue: 1-2, 1 - 13, 19.12.2025

Abstract

Bu çalışma, yapay zekâ destekli, oyunlaştırılmış ve Türkçe arayüzlü bir bilişsel ölçme-gelişim platformu olan "Learnmate" uygulamasını tanıtmaktadır. Türkiye'de yerli dilde kapsamlı dijital değerlendirme araçlarının eksikliğinden yola çıkan bu araştırmanın temel amacı, öğrencilerin dikkat, hafıza, mantıksal düşünme ve görsel-uzamsal algı gibi temel bilişsel becerilerini ölçmek ve bu becerilerin gelişimini desteklemektir. Yöntem olarak, Learnmate platformu otuz sekiz farklı oyunlaştırılmış modül kullanmaktadır. Uygulamanın mimarisi; Kullanıcı Arayüzü, Veri Toplama, Değerlendirme ve Raporlama olmak üzere dört ana katmandan oluşmaktadır. Sistem, her görevde öğrencinin doğruluk oranını, milisaniye düzeyinde tepki süresini ve odaklanma stabilitesini kaydetmektedir. Bu veriler, yapay zekâ tabanlı bir analiz motoru tarafından işlenerek bireysel performans raporlarına dönüştürülmektedir. Sonuç olarak, Learnmate'in bilişsel süreçleri ölçmede geçerli ve uygulanabilir bir dijital araç olduğu saptanmıştır. Tepki süresi analizi, hata örüntüsü incelemesi ve çok boyutlu raporlama gibi özellikleriyle uygulama, Türkiye’deki eğitim teknolojileri ekosisteminde özgün bir örnek teşkil etmektedir.

Ethical Statement

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı beyan ederim.

References

  • Anderson, M., & Reiser, R. (2019). Learning analytics and motivation in digital learning systems. Computers & Education.
  • Brusilovsky, P. (2001). Adaptive educational hypermedia. User Modeling and User-Adapted Interaction, 11(1–2), 87–110.
  • Çetin, B., & Çakır, R. (2021). Gamification in Turkish educational technologies: Opportunities and challenges. Turkish Online Journal of Distance Education, 22(4), 175–191.
  • Çetin, B., & Çakır, R. (2021). Gamification in Turkish educational technologies. Turkish Online Journal of Distance Education, 22(4), 175–191.
  • Hamari, J., Koivisto, J., & Sarsa, H. (2019). Does gamification work? Hawaii International Conference on System Sciences.
  • Katz, B., Jones, M. R., & Shin, J. C. (2018). The efficacy of computerized cognitive training in children. Journal of Applied Research in Memory and Cognition, 7(4), 475–489.
  • Katz, B., Jones, M. R., & Shin, J. C. (2018). The efficacy of computerized cognitive training in children. Journal of Applied Research in Memory and Cognition, 7(4), 475–489.
  • Koçyiğit, D., Kılınç, M. E., Yılmaz, R. N., Mutlu, E., & Ayhan, Y. (2025). Psychometric Properties of Turkish Instruments Assessing Social Cognition in Psychiatry and Neurology: A Systematic Review. Turkish Journal of Psychiatry, 36, 414.
  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? Developmental Psychology, 49(2), 270–291.
  • Morris, C., & MacGlashan, H. (2020). AI-based personalization in educational measurement. Frontiers in Psychology, 11, 1586.
  • Weisz, J. R., Ng, M. Y., & Bearman, S. K. (2019). Measurement-based digital care in youth mental health. JMIR Pediatrics and Parenting, 2(2), e12458.
  • Zhao, S., Chen, Z., & Lu, J. (2023). Gamified learning in cognitive skill development: A systematic review. Computers in Human Behavior Reports, 10, 100263.

LEARNMATE: A GAMIFIED APPROACH IN COGNITIVE SKILL MEASUREMENT AND DEVELOPMENT

Year 2025, Volume: 7 Issue: 1-2, 1 - 13, 19.12.2025

Abstract

This study introduces "Learnmate," an AI-supported, gamified cognitive measurement and development platform featuring a Turkish interface. Stemming from the lack of comprehensive, native-language digital assessment tools in Turkey, the primary aim of this research is to measure and support the development of students' fundamental cognitive skills, such as attention, memory, logical reasoning, and visual-spatial perception. As a methodology, the Learnmate platform utilizes thirty-eight different gamified modules. The application's architecture is composed of four main layers: User Interface, Data Collection, Assessment, and Reporting. In each task, the system records the student's accuracy rate, reaction time at the millisecond level, and focus stability. This data is processed by an AI-based analysis engine and converted into individual performance reports. In conclusion, Learnmate was identified as a valid and applicable digital tool for measuring cognitive processes. With features such as reaction time analysis, error pattern review, and multi-dimensional reporting, the application constitutes a unique example within Turkey's educational technology ecosystem.

Ethical Statement

I declare that this work is original; that I have acted in accordance with the principles and rules of scientific ethics throughout all stages of the work, including preparation, data collection, analysis, and presentation of information; that I have cited the source for all data and information not obtained within the scope of this study and included these sources in the bibliography; and that I have not made any alterations to the data used.

References

  • Anderson, M., & Reiser, R. (2019). Learning analytics and motivation in digital learning systems. Computers & Education.
  • Brusilovsky, P. (2001). Adaptive educational hypermedia. User Modeling and User-Adapted Interaction, 11(1–2), 87–110.
  • Çetin, B., & Çakır, R. (2021). Gamification in Turkish educational technologies: Opportunities and challenges. Turkish Online Journal of Distance Education, 22(4), 175–191.
  • Çetin, B., & Çakır, R. (2021). Gamification in Turkish educational technologies. Turkish Online Journal of Distance Education, 22(4), 175–191.
  • Hamari, J., Koivisto, J., & Sarsa, H. (2019). Does gamification work? Hawaii International Conference on System Sciences.
  • Katz, B., Jones, M. R., & Shin, J. C. (2018). The efficacy of computerized cognitive training in children. Journal of Applied Research in Memory and Cognition, 7(4), 475–489.
  • Katz, B., Jones, M. R., & Shin, J. C. (2018). The efficacy of computerized cognitive training in children. Journal of Applied Research in Memory and Cognition, 7(4), 475–489.
  • Koçyiğit, D., Kılınç, M. E., Yılmaz, R. N., Mutlu, E., & Ayhan, Y. (2025). Psychometric Properties of Turkish Instruments Assessing Social Cognition in Psychiatry and Neurology: A Systematic Review. Turkish Journal of Psychiatry, 36, 414.
  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? Developmental Psychology, 49(2), 270–291.
  • Morris, C., & MacGlashan, H. (2020). AI-based personalization in educational measurement. Frontiers in Psychology, 11, 1586.
  • Weisz, J. R., Ng, M. Y., & Bearman, S. K. (2019). Measurement-based digital care in youth mental health. JMIR Pediatrics and Parenting, 2(2), e12458.
  • Zhao, S., Chen, Z., & Lu, J. (2023). Gamified learning in cognitive skill development: A systematic review. Computers in Human Behavior Reports, 10, 100263.
There are 12 citations in total.

Details

Primary Language Turkish
Subjects Information Systems User Experience Design and Development
Journal Section Research Article
Authors

İbrahim Kuru 0000-0003-3362-3725

Hatice Küpeli 0009-0005-2872-5841

Kerim Kürşat Çevik 0000-0002-2921-506X

Submission Date November 19, 2025
Acceptance Date December 18, 2025
Publication Date December 19, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1-2

Cite

APA Kuru, İ., Küpeli, H., & Çevik, K. K. (2025). LEARNMATE: BİLİŞSEL BECERİ ÖLÇME VE GELİŞTİRMEDE OYUNLAŞTIRILMIŞ YAKLAŞIM. Uygulamalı Bilimler Fakültesi Dergisi, 7(1-2), 1-13.