Review Article
BibTex RIS Cite

Effect of Low Dose Caffeine Ingestion on 8000–m Roller Skiing Performance

Year 2021, Volume: 2 Issue: 3, 126 - 135, 31.12.2021

Abstract

The aim of the study was to investigate the effect of relatively small caffeine dose (~3 mg.
kg-1) ingestion on 8000-m roller skiing time trial performance and heart rate (HR). The volunteers participating in the present study
were 9 female elite roller skiers with 16-19 years of age, the body weight of 55.3 ± 6.4 kg, the height of
164.2±3.7 cm, and a body mass index of 20.4 ± 1.8 kg/m2 . The experiment was a randomized double-blind
crossover design, which involved repeated measures of the same participants. Participants were randomly
divided into 2 groups and completed 2-time trials roller skiing performance for 8000 m. 60 min before each trial,
the subjects consumed 150 mg (~3 mg. kg-1) caffeine (CAF) (SİS-GO ENERGY - Double Espresso) or placebo
(PLA) in gel form. CAF and PLA intake were interverted between groups for the second trial. Throughout the
two 8000-m time trials, 1000 m split times and total time were recorded and immediately before and after time
trial performances heart rate (HR) was measured. Data were analyzed using the SPSS 26.0 software package.
Normality of distribution for outcome measures was tested using the Shapiro-Wilk test and it was determined
that the data showed normal distribution. Paired sample t-test was used to check possible differences between
intervention. Time trial performance was not statistically significant different between CAF and PLA trials
(p>.05). However, caffeine ingestion resulted in an average improvement of 45,23 seconds which is translated to
a 2,93% improvement in performance time. Additionally, 66,6% of the participants completed 8000-m roller
skiing time trial performance faster during the CAF trial compared to PLA trial. After the HR results
examination, it was seen that pre-test HR as well as post-test HR were not statistically significant different
between trials. In conclusion, caffeine ingestion resulted in a total mean reduction in performance time and also
did not increase HR compared to PLA. Therefore, relatively small CAF gel dose (~3 mg.
kg-1) might be used effectively pre-workout ergogenic aid when supplementation during the exercise is not possible.

References

  • Anderson, M. E., Bruce, C. R., Fraser, S. F., Stepto, N. K., Klein, R., Hopkins, W. G., & Hawley, J. A. (2000). Improved 2000-Meter Rowing Performance in Competitive Oarswomen after Caffeine Ingestion. International Journal of Sport Nutrition and Exercise Metabolism, 10(4), 464–475. https://doi.org/10.1123/ijsnem.10.4.464
  • Bazzucchi, I., Felici, F., Montini, M., Figura, F., & Sacchetti, M. (2011). Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle & Nerve, 43(6), 839–844. https://doi.org/10.1002/mus.21995
  • Bell, D. G., Jacobs, I., & Zamecnik, J. (1998). Effects of caffeine, ephedrine and their combination on time to exhaustion during high-intensity exercise. European Journal of Applied Physiology and Occupational Physiology, 77(5), 427–433. https://doi.org/10.1007/s004210050355
  • Bell, D. G., & McLellan, T. M. (2002). Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. Journal of Applied Physiology, 93(4), 1227– 1234. https://doi.org/10.1152/japplphysiol.00187.2002
  • Bortolotti, H., Altimari, L. R., Vitor-Costa, M., & Cyrino, E. S. (2014). Performance during a 20-km cycling time-trial after caffeine ingestion. Journal of the International Society of Sports Nutrition, 11(1), 45. https://doi.org/10.1186/s12970-014-0045-8
  • Bridge, C. A., & Jones, M. A. (2006). The effect of caffeine ingestion on 8 km run performance in a field setting. Journal of Sports Sciences, 24(4), 433–439. https://doi.org/10.1080/02640410500231496
  • Bruce, C. R., Anderson, M. E., Fraser, S. F., Stepto, N. K., Klein, R., Hopkins, W. G., & Hawley, J. A. (2000). Enhancement of 2000-m rowing performance after caffeine ingestion: Medicine & Science in Sports & Exercise, 32(11), 1958–1963. https://doi.org/10.1097/00005768-200011000-00021
  • Burke, L. M. (2008). Caffeine and sports performance. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, 33(6), 1319–1334. https://doi.org/10.1139/H08-130
  • Calbet, J. a. L., Holmberg, H.-C., Rosdahl, H., van Hall, G., Jensen-Urstad, M., & Saltin, B. (2005). Why do arms extract less oxygen than legs during exercise? American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289(5), R1448- 1458. https://doi.org/10.1152/ajpregu.00824.2004
  • Costill, D. L., Dalsky, G. P., & Fink, W. J. (1978). Effects of caffeine ingestion on metabolism and exercise performance. Medicine and Science in Sports, 10(3), 155– 158.
  • Doherty, M., & Smith, P. M. (2005). Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 15(2), 69–78. https://doi.org/10.1111/j.1600-0838.2005.00445.x
  • Fredholm, B. B., IJzerman, A. P., Jacobson, K. A., Klotz, K. N., & Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews, 53(4), 527–552.
  • Glaister, M., & Moir, G. (2019). Effects of Caffeine on Time Trial Performance and Associated Physiological Responses: A Meta-Analysis. Journal of Caffeine and Adenosine Research, 9(2), 40–52. https://doi.org/10.1089/caff.2019.0003
  • Goldstein, E. R., Ziegenfuss, T., Kalman, D., Kreider, R., Campbell, B., Wilborn, C., Taylor, L., Willoughby, D., Stout, J., Graves, B. S., Wildman, R., Ivy, J. L., Spano, M., Smith, A. E., & Antonio, J. (2010). International society of sports nutrition position stand: Caffeine and performance. Journal of the International Society of Sports Nutrition, 7(1), 5. https://doi.org/10.1186/1550-2783-7-5
  • Graham, T. E. (2001). Caffeine and Exercise. Sports Medicine, 31(11), 785–807. https://doi.org/10.2165/00007256-200131110-00002
  • Graham-Paulson, T., Perret, C., & Goosey-Tolfrey, V. (2016). Improvements in Cycling but Not Handcycling 10 km Time Trial Performance in Habitual Caffeine Users. Nutrients, 8(7), 393. https://doi.org/10.3390/nu8070393
  • Helge, J. W. (2010). Arm and leg substrate utilization and muscle adaptation after prolonged low-intensity training. Acta Physiologica (Oxford, England), 199(4), 519–528. https://doi.org/10.1111/j.1748-1716.2010.02123.x
  • Hodgson, A. B., Randell, R. K., & Jeukendrup, A. E. (2013). The Metabolic and Performance Effects of Caffeine Compared to Coffee during Endurance Exercise. PLoS ONE, 8(4), e59561. https://doi.org/10.1371/journal.pone.0059561
  • Ivy, J. L., Costill, D. L., Fink, W. J., & Lower, R. W. (1979). Influence of caffeine and carbohydrate feedings on endurance performance. Medicine and Science in Sports, 11(1), 6–11.
  • Ivy, J. L., Kammer, L., Ding, Z., Wang, B., Bernard, J. R., Liao, Y.-H., & Hwang, J. (2009). Improved Cycling Time-Trial Performance after Ingestion of a Caffeine Energy Drink. International Journal of Sport Nutrition and Exercise Metabolism, 19(1), 61–78. https://doi.org/10.1123/ijsnem.19.1.61
  • Jenkins, N. T., Trilk, J. L., Singhal, A., O’Connor, P. J., & Cureton, K. J. (2008). Ergogenic Effects of Low Doses of Caffeine on Cycling Performance. International Journal of Sport Nutrition and Exercise Metabolism, 18(3), 328–342. https://doi.org/10.1123/ijsnem.18.3.328
  • Laurence, G., Wallman, K., & Guelfi, K. (2012). Effects of caffeine on time trial performance in sedentary men. Journal of Sports Sciences, 30(12), 1235–1240. https://doi.org/10.1080/02640414.2012.693620
  • McNaughton, L. R., Lovell, R. J., Siegler, J., Midgley, A. W., Moore, L., & Bentley, D. J. (2008). The Effects of Caffeine Ingestion on Time Trial Cycling Performance. International Journal of Sports Physiology and Performance, 3(2), 157–163. https://doi.org/10.1123/ijspp.3.2.157
  • Skinner, T. L., Jenkins, D. G., Coombes, J. S., Taaffe, D. R., & Leveritt, M. D. (2010). Dose Response of Caffeine on 2000-m Rowing Performance. Medicine & Science in Sports & Exercise, 42(3), 571–576. https://doi.org/10.1249/MSS.0b013e3181b6668b
  • Stadheim, H. K., Kvamme, B., Olsen, R., Drevon, C. A., Ivy, J. L., & Jensen, J. (2013). Caffeine Increases Performance in Cross-country Double-Poling Time Trial Exercise. Medicine & Science in Sports & Exercise, 45(11), 2175–2183. https://doi.org/10.1249/MSS.0b013e3182967948
  • Tarnopolsky, M. A. (2008). Effect of caffeine on the neuromuscular system—Potential as an ergogenic aid. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, 33(6), 1284–1289. https://doi.org/10.1139/H08- 121
  • Van Hall, G., Jensen-Urstad, M., Rosdahl, H., Holmberg, H.-C., Saltin, B., & Calbet, J. a. L. (2003). Leg and arm lactate and substrate kinetics during exercise. American Journal of Physiology. Endocrinology and Metabolism, 284(1), E193-205. https://doi.org/10.1152/ajpendo.00273.2002
Year 2021, Volume: 2 Issue: 3, 126 - 135, 31.12.2021

Abstract

References

  • Anderson, M. E., Bruce, C. R., Fraser, S. F., Stepto, N. K., Klein, R., Hopkins, W. G., & Hawley, J. A. (2000). Improved 2000-Meter Rowing Performance in Competitive Oarswomen after Caffeine Ingestion. International Journal of Sport Nutrition and Exercise Metabolism, 10(4), 464–475. https://doi.org/10.1123/ijsnem.10.4.464
  • Bazzucchi, I., Felici, F., Montini, M., Figura, F., & Sacchetti, M. (2011). Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle & Nerve, 43(6), 839–844. https://doi.org/10.1002/mus.21995
  • Bell, D. G., Jacobs, I., & Zamecnik, J. (1998). Effects of caffeine, ephedrine and their combination on time to exhaustion during high-intensity exercise. European Journal of Applied Physiology and Occupational Physiology, 77(5), 427–433. https://doi.org/10.1007/s004210050355
  • Bell, D. G., & McLellan, T. M. (2002). Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. Journal of Applied Physiology, 93(4), 1227– 1234. https://doi.org/10.1152/japplphysiol.00187.2002
  • Bortolotti, H., Altimari, L. R., Vitor-Costa, M., & Cyrino, E. S. (2014). Performance during a 20-km cycling time-trial after caffeine ingestion. Journal of the International Society of Sports Nutrition, 11(1), 45. https://doi.org/10.1186/s12970-014-0045-8
  • Bridge, C. A., & Jones, M. A. (2006). The effect of caffeine ingestion on 8 km run performance in a field setting. Journal of Sports Sciences, 24(4), 433–439. https://doi.org/10.1080/02640410500231496
  • Bruce, C. R., Anderson, M. E., Fraser, S. F., Stepto, N. K., Klein, R., Hopkins, W. G., & Hawley, J. A. (2000). Enhancement of 2000-m rowing performance after caffeine ingestion: Medicine & Science in Sports & Exercise, 32(11), 1958–1963. https://doi.org/10.1097/00005768-200011000-00021
  • Burke, L. M. (2008). Caffeine and sports performance. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, 33(6), 1319–1334. https://doi.org/10.1139/H08-130
  • Calbet, J. a. L., Holmberg, H.-C., Rosdahl, H., van Hall, G., Jensen-Urstad, M., & Saltin, B. (2005). Why do arms extract less oxygen than legs during exercise? American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289(5), R1448- 1458. https://doi.org/10.1152/ajpregu.00824.2004
  • Costill, D. L., Dalsky, G. P., & Fink, W. J. (1978). Effects of caffeine ingestion on metabolism and exercise performance. Medicine and Science in Sports, 10(3), 155– 158.
  • Doherty, M., & Smith, P. M. (2005). Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 15(2), 69–78. https://doi.org/10.1111/j.1600-0838.2005.00445.x
  • Fredholm, B. B., IJzerman, A. P., Jacobson, K. A., Klotz, K. N., & Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews, 53(4), 527–552.
  • Glaister, M., & Moir, G. (2019). Effects of Caffeine on Time Trial Performance and Associated Physiological Responses: A Meta-Analysis. Journal of Caffeine and Adenosine Research, 9(2), 40–52. https://doi.org/10.1089/caff.2019.0003
  • Goldstein, E. R., Ziegenfuss, T., Kalman, D., Kreider, R., Campbell, B., Wilborn, C., Taylor, L., Willoughby, D., Stout, J., Graves, B. S., Wildman, R., Ivy, J. L., Spano, M., Smith, A. E., & Antonio, J. (2010). International society of sports nutrition position stand: Caffeine and performance. Journal of the International Society of Sports Nutrition, 7(1), 5. https://doi.org/10.1186/1550-2783-7-5
  • Graham, T. E. (2001). Caffeine and Exercise. Sports Medicine, 31(11), 785–807. https://doi.org/10.2165/00007256-200131110-00002
  • Graham-Paulson, T., Perret, C., & Goosey-Tolfrey, V. (2016). Improvements in Cycling but Not Handcycling 10 km Time Trial Performance in Habitual Caffeine Users. Nutrients, 8(7), 393. https://doi.org/10.3390/nu8070393
  • Helge, J. W. (2010). Arm and leg substrate utilization and muscle adaptation after prolonged low-intensity training. Acta Physiologica (Oxford, England), 199(4), 519–528. https://doi.org/10.1111/j.1748-1716.2010.02123.x
  • Hodgson, A. B., Randell, R. K., & Jeukendrup, A. E. (2013). The Metabolic and Performance Effects of Caffeine Compared to Coffee during Endurance Exercise. PLoS ONE, 8(4), e59561. https://doi.org/10.1371/journal.pone.0059561
  • Ivy, J. L., Costill, D. L., Fink, W. J., & Lower, R. W. (1979). Influence of caffeine and carbohydrate feedings on endurance performance. Medicine and Science in Sports, 11(1), 6–11.
  • Ivy, J. L., Kammer, L., Ding, Z., Wang, B., Bernard, J. R., Liao, Y.-H., & Hwang, J. (2009). Improved Cycling Time-Trial Performance after Ingestion of a Caffeine Energy Drink. International Journal of Sport Nutrition and Exercise Metabolism, 19(1), 61–78. https://doi.org/10.1123/ijsnem.19.1.61
  • Jenkins, N. T., Trilk, J. L., Singhal, A., O’Connor, P. J., & Cureton, K. J. (2008). Ergogenic Effects of Low Doses of Caffeine on Cycling Performance. International Journal of Sport Nutrition and Exercise Metabolism, 18(3), 328–342. https://doi.org/10.1123/ijsnem.18.3.328
  • Laurence, G., Wallman, K., & Guelfi, K. (2012). Effects of caffeine on time trial performance in sedentary men. Journal of Sports Sciences, 30(12), 1235–1240. https://doi.org/10.1080/02640414.2012.693620
  • McNaughton, L. R., Lovell, R. J., Siegler, J., Midgley, A. W., Moore, L., & Bentley, D. J. (2008). The Effects of Caffeine Ingestion on Time Trial Cycling Performance. International Journal of Sports Physiology and Performance, 3(2), 157–163. https://doi.org/10.1123/ijspp.3.2.157
  • Skinner, T. L., Jenkins, D. G., Coombes, J. S., Taaffe, D. R., & Leveritt, M. D. (2010). Dose Response of Caffeine on 2000-m Rowing Performance. Medicine & Science in Sports & Exercise, 42(3), 571–576. https://doi.org/10.1249/MSS.0b013e3181b6668b
  • Stadheim, H. K., Kvamme, B., Olsen, R., Drevon, C. A., Ivy, J. L., & Jensen, J. (2013). Caffeine Increases Performance in Cross-country Double-Poling Time Trial Exercise. Medicine & Science in Sports & Exercise, 45(11), 2175–2183. https://doi.org/10.1249/MSS.0b013e3182967948
  • Tarnopolsky, M. A. (2008). Effect of caffeine on the neuromuscular system—Potential as an ergogenic aid. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, 33(6), 1284–1289. https://doi.org/10.1139/H08- 121
  • Van Hall, G., Jensen-Urstad, M., Rosdahl, H., Holmberg, H.-C., Saltin, B., & Calbet, J. a. L. (2003). Leg and arm lactate and substrate kinetics during exercise. American Journal of Physiology. Endocrinology and Metabolism, 284(1), E193-205. https://doi.org/10.1152/ajpendo.00273.2002
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Sports Training
Journal Section 2021 Cilt: 2 Sayı : 3
Authors

Derya Çetin Sarişik This is me

Hülya Andre This is me

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 2 Issue: 3

Cite

APA Sarişik, D. Ç., & Andre, H. (2021). Effect of Low Dose Caffeine Ingestion on 8000–m Roller Skiing Performance. Uluslararası Bozok Spor Bilimleri Dergisi, 2(3), 126-135.