Research Article
BibTex RIS Cite
Year 2022, , 24 - 31, 15.03.2022
https://doi.org/10.32323/ujma.1067101

Abstract

Supporting Institution

Karamanoğlu Mehmetbey Üniversitesi (KMÜ)

References

  • [1] G. Ayar, H.R. Cavusoglu, Conharmonic curvature tensor on nearly cosymplectic manifolds with generalized tanaka-webster connection, Sigma J. Eng. Nat. Sci, 39(5), (2021), pp. 9–13.
  • [2] G. Ayar, P. Tekin, N. Aktan, Some Curvature Conditions on Nearly Cosymplectic Manifolds, Indian J. Industrial Appl. Math., 10(1), (2019), 51-58.
  • [3] G. Ayar, M. Yildirim, Nearly cosymplectic manifolds with nullity conditions, Asian-Eur. J. Math., 12(6), (2019), 2040012 (10 pages). doi: 10.1142/S1793557120400124.
  • [4] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, (1976), Springer-Verlag, Berlin.
  • [5] D.E. Blair, Almost Contact Manifolds with Killing Structure Tensors, I. Pac. J. Math., 39, (1971), 285-292.
  • [6] D.E. Blair, S.I. Goldberg, Topology of almost contact manifolds, J. Differential Geom., 1, (1967), 347-354.
  • [7] S.K. Chaubey, R.H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differ. Geom. Dyn. Syst., 12, (2010), 52-60.
  • [8] S.K. Chaubey, Some properties of LP-Sasakian manifolds equipped with m-projective curvature tensor, Bull. Math. Anal. Appl., 3(4), (2011), 50-58.
  • [9] S.K. Chaubey, On weakly m-projectively symmetric manifolds, Novi Sad J. Math., 42(1), (2012), 67-79.
  • [10] B.Y. Chen, Geometry of submanifolds, Pure Appl. Math., 22, (1973), Marcel Dekker, Inc., New York.
  • [11] D. Chinea, M. de L´eon, J.C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures Appl., 72(6), (1993), 567-591.
  • [12] A. De Nicola, G. Dileo, I. Yudin, On Nearly Sasakian and Nearly Cosymplectic Manifolds, Annali di Mat. , 197(1), (2018), 127-138.
  • [13] U.C. De, G. Ghosh, On Generalized Tanaka-Webster Connection In Sasakian Manifolds, Bull. Transilv. Univ. Brasov 2- Ser. III: Math., Inf., Ph., 9(58), (2016), 13-24.
  • [14] A. Dundar, N. Aktan, Some Results on Nearly Cosymplectic Manifolds, Univers. J. Math. Appl., 2(4),(2019), 218-223, DOI: 10.32323/ujma.625939.
  • [15] H. Endo, On the Cur vature Tensor of Nearly Cosymplectic Manifolds of Constant f-sectional curvature, An. Stiit. Univ. ”Al. I. Cuza” Iasi. Mat. (N.S.), (2005), 439-454.
  • [16] D. Friedan, Non linear models in 2+edimensions, Ann. Phys., 163, (1985), 318419.
  • [17] A. Gray, Nearly Kahler Manifolds, J. Differential Geom., 4, (1970), 283-309.
  • [18] P. Libermann, Sur les automorphismes infinit esimaux des structures symplectiques et de atructures de contact, oll., G’eom. Diff. Globale, (1959), 37-59.
  • [19] B.C. Montano, Some remarks on the generalized Tanaka-Webster connection of a contact metric manifold, Rocky Mountain J. Math., 40(3),(2010), 1009-1037.
  • [20] I. Unal, M. Altin, N(k)-contact Metric Manifolds with Generalized Tanaka-Webster Connection, Filomat, 35(4), (2021).
  • [21] D.G. Prakasha, B.S. Hadimani, On The Conharmonic Curvature Tensor Of Kenmotsu Manifolds With Generalized Tanaka-Webster Connection, Miskolc Math. Notes, 19(1), (2018), 491-503.
  • [22] G.P. Pokhariyal, R.S. Mishra, Curvature tensor and their relativistic significance II, Yokohama Math. J., 19, (1971), 97-103.
  • [23] R. Sharma, Certain results on K-contact and (k;m)􀀀contact manifolds, J. Geom., 89, (2008), 138-147.
  • [24] S. Tanno, The automorphism groups of almost contact Riemannian manifold, Tohoku Math. J., 21, (1969), 21-38.
  • [25] M. Yildirim, S. Beyendi, Some notes on nearly cosymplectic manifolds, Honam Math. J., 43(3), (2021), 539–545. https://doi.org/10.5831/HMJ.2021.43.3.539.
  • [26] K. Yano, S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differential Geom., 2, (1968), 161-184.

Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds with Tanaka-Webster Connection

Year 2022, , 24 - 31, 15.03.2022
https://doi.org/10.32323/ujma.1067101

Abstract

In this article, some curvature properties with respect to Tanaka-Webster connection on nearly cosymplectic manifolds have been studied.

References

  • [1] G. Ayar, H.R. Cavusoglu, Conharmonic curvature tensor on nearly cosymplectic manifolds with generalized tanaka-webster connection, Sigma J. Eng. Nat. Sci, 39(5), (2021), pp. 9–13.
  • [2] G. Ayar, P. Tekin, N. Aktan, Some Curvature Conditions on Nearly Cosymplectic Manifolds, Indian J. Industrial Appl. Math., 10(1), (2019), 51-58.
  • [3] G. Ayar, M. Yildirim, Nearly cosymplectic manifolds with nullity conditions, Asian-Eur. J. Math., 12(6), (2019), 2040012 (10 pages). doi: 10.1142/S1793557120400124.
  • [4] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, (1976), Springer-Verlag, Berlin.
  • [5] D.E. Blair, Almost Contact Manifolds with Killing Structure Tensors, I. Pac. J. Math., 39, (1971), 285-292.
  • [6] D.E. Blair, S.I. Goldberg, Topology of almost contact manifolds, J. Differential Geom., 1, (1967), 347-354.
  • [7] S.K. Chaubey, R.H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differ. Geom. Dyn. Syst., 12, (2010), 52-60.
  • [8] S.K. Chaubey, Some properties of LP-Sasakian manifolds equipped with m-projective curvature tensor, Bull. Math. Anal. Appl., 3(4), (2011), 50-58.
  • [9] S.K. Chaubey, On weakly m-projectively symmetric manifolds, Novi Sad J. Math., 42(1), (2012), 67-79.
  • [10] B.Y. Chen, Geometry of submanifolds, Pure Appl. Math., 22, (1973), Marcel Dekker, Inc., New York.
  • [11] D. Chinea, M. de L´eon, J.C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures Appl., 72(6), (1993), 567-591.
  • [12] A. De Nicola, G. Dileo, I. Yudin, On Nearly Sasakian and Nearly Cosymplectic Manifolds, Annali di Mat. , 197(1), (2018), 127-138.
  • [13] U.C. De, G. Ghosh, On Generalized Tanaka-Webster Connection In Sasakian Manifolds, Bull. Transilv. Univ. Brasov 2- Ser. III: Math., Inf., Ph., 9(58), (2016), 13-24.
  • [14] A. Dundar, N. Aktan, Some Results on Nearly Cosymplectic Manifolds, Univers. J. Math. Appl., 2(4),(2019), 218-223, DOI: 10.32323/ujma.625939.
  • [15] H. Endo, On the Cur vature Tensor of Nearly Cosymplectic Manifolds of Constant f-sectional curvature, An. Stiit. Univ. ”Al. I. Cuza” Iasi. Mat. (N.S.), (2005), 439-454.
  • [16] D. Friedan, Non linear models in 2+edimensions, Ann. Phys., 163, (1985), 318419.
  • [17] A. Gray, Nearly Kahler Manifolds, J. Differential Geom., 4, (1970), 283-309.
  • [18] P. Libermann, Sur les automorphismes infinit esimaux des structures symplectiques et de atructures de contact, oll., G’eom. Diff. Globale, (1959), 37-59.
  • [19] B.C. Montano, Some remarks on the generalized Tanaka-Webster connection of a contact metric manifold, Rocky Mountain J. Math., 40(3),(2010), 1009-1037.
  • [20] I. Unal, M. Altin, N(k)-contact Metric Manifolds with Generalized Tanaka-Webster Connection, Filomat, 35(4), (2021).
  • [21] D.G. Prakasha, B.S. Hadimani, On The Conharmonic Curvature Tensor Of Kenmotsu Manifolds With Generalized Tanaka-Webster Connection, Miskolc Math. Notes, 19(1), (2018), 491-503.
  • [22] G.P. Pokhariyal, R.S. Mishra, Curvature tensor and their relativistic significance II, Yokohama Math. J., 19, (1971), 97-103.
  • [23] R. Sharma, Certain results on K-contact and (k;m)􀀀contact manifolds, J. Geom., 89, (2008), 138-147.
  • [24] S. Tanno, The automorphism groups of almost contact Riemannian manifold, Tohoku Math. J., 21, (1969), 21-38.
  • [25] M. Yildirim, S. Beyendi, Some notes on nearly cosymplectic manifolds, Honam Math. J., 43(3), (2021), 539–545. https://doi.org/10.5831/HMJ.2021.43.3.539.
  • [26] K. Yano, S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differential Geom., 2, (1968), 161-184.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Gülhan Ayar 0000-0002-1018-4590

Publication Date March 15, 2022
Submission Date February 3, 2022
Acceptance Date March 7, 2022
Published in Issue Year 2022

Cite

APA Ayar, G. (2022). Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds with Tanaka-Webster Connection. Universal Journal of Mathematics and Applications, 5(1), 24-31. https://doi.org/10.32323/ujma.1067101
AMA Ayar G. Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds with Tanaka-Webster Connection. Univ. J. Math. Appl. March 2022;5(1):24-31. doi:10.32323/ujma.1067101
Chicago Ayar, Gülhan. “Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds With Tanaka-Webster Connection”. Universal Journal of Mathematics and Applications 5, no. 1 (March 2022): 24-31. https://doi.org/10.32323/ujma.1067101.
EndNote Ayar G (March 1, 2022) Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds with Tanaka-Webster Connection. Universal Journal of Mathematics and Applications 5 1 24–31.
IEEE G. Ayar, “Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds with Tanaka-Webster Connection”, Univ. J. Math. Appl., vol. 5, no. 1, pp. 24–31, 2022, doi: 10.32323/ujma.1067101.
ISNAD Ayar, Gülhan. “Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds With Tanaka-Webster Connection”. Universal Journal of Mathematics and Applications 5/1 (March 2022), 24-31. https://doi.org/10.32323/ujma.1067101.
JAMA Ayar G. Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds with Tanaka-Webster Connection. Univ. J. Math. Appl. 2022;5:24–31.
MLA Ayar, Gülhan. “Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds With Tanaka-Webster Connection”. Universal Journal of Mathematics and Applications, vol. 5, no. 1, 2022, pp. 24-31, doi:10.32323/ujma.1067101.
Vancouver Ayar G. Some Curvature Tensor Relations on Nearly Cosymplectic Manifolds with Tanaka-Webster Connection. Univ. J. Math. Appl. 2022;5(1):24-31.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.