Research Article
BibTex RIS Cite

Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence

Year 2023, , 15 - 22, 28.03.2023
https://doi.org/10.32323/ujma.1207010

Abstract

This article is a continuation of our previous works. We mainly investigate a Korovkin type theorem for double sequences of positive linear operators defined in the space of all $2\pi $-periodic and real valued continuous functions on the real two-dimensional space with help of the concept of triangular $A$-statistical convergence, which is a kind of statistical convergence for double real sequences. Also, we analyze the rate of convergence of double operators in this via modulus of continuity.

References

  • [1] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  • [2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymtotique, Colloq. Math. 2 (1951), 73-74.
  • [3] C. Bardaro, A. Boccuto, K. Demirci, I. Mantellini, S. Orhan, Triangular A-statistical approximation by double sequences of positive linear operators, Results in Mathematics, 68 (2015), 271-291.
  • [4] C. Bardaro, A. Boccuto, K. Demirci, I. Mantellini, S. Orhan, Korovkin-Type Theorems for Modular Y-A-Statistical Convergence, Journal of Function Spaces, 2015 (2015), 1-11.
  • [5] K. Demirci, F. Dirik, P. Okc¸u, Approximation in Triangular Statistical Sense to B-Continuous Functions by Positive Linear Operators, Annals of the Alexandru Ioan Cuza University-Mathematics, 63(3) (2017).
  • [6] S. C¸ ınar, Triangular A-statistical relative uniform convergence for double sequences of positive linear operator, Facta Universitatis. Series: Mathematics and Informatics, (2021) 065-077.
  • [7] S. C¸ ınar, S. Yıldız, K. Demirci, Korovkin type approximation via triangular A-statistical convergence on an infinite interval, Turkish Journal of Mathematics 45(2) (2021), 929-942.
  • [8] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
  • [9] C. Bardaro, I. Mantellini, Korovkin’s theorem in modular spaces, Commentationes Math. 47 (2007), 239-253.
  • [10] K. Demirci, A. Boccuto, S. Yıldız, F. Dirik, Relative uniform convergence of a sequence of functions at a point and Korovkin-type approximation theorems, Positivity, 24(1) (2020), 1-11.
  • [11] K. Demirci, S. Orhan, Statistically relatively uniform convergence of positive linear operators, Results Math., 69 (2016), 359-367.
  • [12] K. Demirci, S. Orhan, B. Kolay, Relative Hemen Hemen Yakınsaklık ve Yaklas¸ım Teoremleri, Sinop U¨ niversitesi Fen Bilimleri Dergisi, 1(2) (2016), 114-122.
  • [13] K. Demirci, S. Yıldız, F. Dirik, Approximation via power series method in two-dimensional weighted spaces, Bulletin of the Malaysian Mathematical Sciences Society, 43(6) (2020), 3871-3883.
  • [14] K. Demirci, F. Dirik, Approximation for periodic functions via statistical s-convergence, Mathematical Communications, 16(1) (2011), 77-84.
  • [15] K. Demirci, F. Dirik, S. Yıldız, Approximation via equi-statistical convergence in the sense of power series method, Revista de la Real Academia de Ciencias Exactas, 116(2) (2022), 1-13.
  • [16] O. Duman, Statistical approximation for periodic functions, Demons. Math., 36(4) (2003), 873-878. [17] O. Duman, E. Erkus¸, Approximation of continuous periodic functions via statistical convergence, Comput. Math. Appl., 52 (2006) 967-974.
  • [18] O. Duman, M. K. Khan, C. Orhan, A-statistical convergence of approximating operators, Math. Inequal. Appl., 6 (2003) 689-699.
  • [19] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138.
  • [20] M. U¨ nver, C. Orhan, Statistical convergence with respect to power series methods and applications to approximation theory, Numerical Functional Analysis and Optimization, 40(5) (2019), 535-547.
  • [21] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53 (1900), 289-321.
  • [22] H.J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2 (1936), 29-60.
  • [23] G.M. Robison, Divergent double sequences and series, Amer. Math. Soc. Transl., 28 (1926), 50-73.
  • [24] F. Moricz, Statistical convergence of multiple sequences, Arch. Math. (Basel), 81 (2004), 82-89.
  • [25] G.H. Hardy, Divergent Series, Oxford Univ. Press, London, 1949.
  • [26] K. Demirci, F. Dirik, Four-dimensional matrix transformation and rate of A-statistical convergence of periodic functions, Math. Comput. Modelling, 52 (2010), 1858-1866.
Year 2023, , 15 - 22, 28.03.2023
https://doi.org/10.32323/ujma.1207010

Abstract

References

  • [1] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  • [2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymtotique, Colloq. Math. 2 (1951), 73-74.
  • [3] C. Bardaro, A. Boccuto, K. Demirci, I. Mantellini, S. Orhan, Triangular A-statistical approximation by double sequences of positive linear operators, Results in Mathematics, 68 (2015), 271-291.
  • [4] C. Bardaro, A. Boccuto, K. Demirci, I. Mantellini, S. Orhan, Korovkin-Type Theorems for Modular Y-A-Statistical Convergence, Journal of Function Spaces, 2015 (2015), 1-11.
  • [5] K. Demirci, F. Dirik, P. Okc¸u, Approximation in Triangular Statistical Sense to B-Continuous Functions by Positive Linear Operators, Annals of the Alexandru Ioan Cuza University-Mathematics, 63(3) (2017).
  • [6] S. C¸ ınar, Triangular A-statistical relative uniform convergence for double sequences of positive linear operator, Facta Universitatis. Series: Mathematics and Informatics, (2021) 065-077.
  • [7] S. C¸ ınar, S. Yıldız, K. Demirci, Korovkin type approximation via triangular A-statistical convergence on an infinite interval, Turkish Journal of Mathematics 45(2) (2021), 929-942.
  • [8] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
  • [9] C. Bardaro, I. Mantellini, Korovkin’s theorem in modular spaces, Commentationes Math. 47 (2007), 239-253.
  • [10] K. Demirci, A. Boccuto, S. Yıldız, F. Dirik, Relative uniform convergence of a sequence of functions at a point and Korovkin-type approximation theorems, Positivity, 24(1) (2020), 1-11.
  • [11] K. Demirci, S. Orhan, Statistically relatively uniform convergence of positive linear operators, Results Math., 69 (2016), 359-367.
  • [12] K. Demirci, S. Orhan, B. Kolay, Relative Hemen Hemen Yakınsaklık ve Yaklas¸ım Teoremleri, Sinop U¨ niversitesi Fen Bilimleri Dergisi, 1(2) (2016), 114-122.
  • [13] K. Demirci, S. Yıldız, F. Dirik, Approximation via power series method in two-dimensional weighted spaces, Bulletin of the Malaysian Mathematical Sciences Society, 43(6) (2020), 3871-3883.
  • [14] K. Demirci, F. Dirik, Approximation for periodic functions via statistical s-convergence, Mathematical Communications, 16(1) (2011), 77-84.
  • [15] K. Demirci, F. Dirik, S. Yıldız, Approximation via equi-statistical convergence in the sense of power series method, Revista de la Real Academia de Ciencias Exactas, 116(2) (2022), 1-13.
  • [16] O. Duman, Statistical approximation for periodic functions, Demons. Math., 36(4) (2003), 873-878. [17] O. Duman, E. Erkus¸, Approximation of continuous periodic functions via statistical convergence, Comput. Math. Appl., 52 (2006) 967-974.
  • [18] O. Duman, M. K. Khan, C. Orhan, A-statistical convergence of approximating operators, Math. Inequal. Appl., 6 (2003) 689-699.
  • [19] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138.
  • [20] M. U¨ nver, C. Orhan, Statistical convergence with respect to power series methods and applications to approximation theory, Numerical Functional Analysis and Optimization, 40(5) (2019), 535-547.
  • [21] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53 (1900), 289-321.
  • [22] H.J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2 (1936), 29-60.
  • [23] G.M. Robison, Divergent double sequences and series, Amer. Math. Soc. Transl., 28 (1926), 50-73.
  • [24] F. Moricz, Statistical convergence of multiple sequences, Arch. Math. (Basel), 81 (2004), 82-89.
  • [25] G.H. Hardy, Divergent Series, Oxford Univ. Press, London, 1949.
  • [26] K. Demirci, F. Dirik, Four-dimensional matrix transformation and rate of A-statistical convergence of periodic functions, Math. Comput. Modelling, 52 (2010), 1858-1866.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Selin Çınar 0000-0002-6244-6214

Publication Date March 28, 2023
Submission Date November 18, 2022
Acceptance Date January 23, 2023
Published in Issue Year 2023

Cite

APA Çınar, S. (2023). Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence. Universal Journal of Mathematics and Applications, 6(1), 15-22. https://doi.org/10.32323/ujma.1207010
AMA Çınar S. Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence. Univ. J. Math. Appl. March 2023;6(1):15-22. doi:10.32323/ujma.1207010
Chicago Çınar, Selin. “Theorems of Second Korovkin Type With Respect to Triangular $A$-Statistical Convergence”. Universal Journal of Mathematics and Applications 6, no. 1 (March 2023): 15-22. https://doi.org/10.32323/ujma.1207010.
EndNote Çınar S (March 1, 2023) Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence. Universal Journal of Mathematics and Applications 6 1 15–22.
IEEE S. Çınar, “Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence”, Univ. J. Math. Appl., vol. 6, no. 1, pp. 15–22, 2023, doi: 10.32323/ujma.1207010.
ISNAD Çınar, Selin. “Theorems of Second Korovkin Type With Respect to Triangular $A$-Statistical Convergence”. Universal Journal of Mathematics and Applications 6/1 (March 2023), 15-22. https://doi.org/10.32323/ujma.1207010.
JAMA Çınar S. Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence. Univ. J. Math. Appl. 2023;6:15–22.
MLA Çınar, Selin. “Theorems of Second Korovkin Type With Respect to Triangular $A$-Statistical Convergence”. Universal Journal of Mathematics and Applications, vol. 6, no. 1, 2023, pp. 15-22, doi:10.32323/ujma.1207010.
Vancouver Çınar S. Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence. Univ. J. Math. Appl. 2023;6(1):15-22.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.