Research Article
BibTex RIS Cite

Characterizations of Matrix and Compact Operators on BK Spaces

Year 2023, , 76 - 85, 01.07.2023
https://doi.org/10.32323/ujma.1282831

Abstract

In the present paper, by estimating operator norms, we give some characterizations of infinite matrix classes $\left( \left\vert E_{\mu }^{r}\right\vert _{q},\Lambda\right) $ and $\left( \left\vert E_{\mu }^{r}\right\vert _{\infty },\Lambda\right) $, where the absolute spaces $\ \left\vert E_{\mu }^{r}\right\vert _{q},$ $\left\vert E_{\mu }^{r}\right\vert _{\infty }$ have been recently studied by G\"{o}k\c{c}e and Sar{\i }g\"{o}l \cite{GS2019c} and $\Lambda$ is one of the well-known spaces $c_{0},c,l_{\infty },l_{q}(q\geq 1)$. Also, we obtain necessary and sufficient conditions for each matrix in these classes to be compact establishing their identities or estimates for the Hausdorff measures of noncompactness.

References

  • [1] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Mathematics, (2002), 1–39.
  • [2] G. Perelman, Ricci flow with surgery on three-manifolds, http://arXiv.org/abs/math/0303109, (2003), 1–22.
  • [3] R. Sharma, Certain results on k-contact and (k;m)􀀀contact manifolds, J. Geom., 89 (2008), 138–147.
  • [4] S. R. Ashoka, C. S. Bagewadi, G. Ingalahalli, Certain results on Ricci Solitons in a-Sasakian manifolds, Hindawi Publ. Corporation, Geometry, 2013, Article ID 573925, (2013), 4 Pages.
  • [5] S. R. Ashoka, C. S. Bagewadi, G. Ingalahalli, A geometry on Ricci solitons in (LCS)n manifolds, Diff. Geom.-Dynamical Systems, 16 (2014), 50–62.
  • [6] C. S. Bagewadi, G. Ingalahalli, Ricci solitons in Lorentzian-Sasakian manifolds, Acta Math. Acad. Paeda. Nyire., 28 (2012), 59–68.
  • [7] G. Ingalahalli, C. S. Bagewadi, Ricci solitons in a-Sasakian manifolds, ISRN Geometry, 2012, Article ID 421384, (2012), 13 Pages.
  • [8] C. L. Bejan, M. Crasmareanu, Ricci Solitons in manifolds with quasi-contact curvature, Publ. Math. Debrecen, 78 (2011), 235–243.
  • [9] A. M. Blaga, h-Ricci solitons on para-kenmotsu manifolds, Balkan J. Geom. Appl., 20 (2015), 1–13.
  • [10] S. Chandra, S. K. Hui, A. A. Shaikh, Second order parallel tensors and Ricci solitons on (LCS)n-manifolds, Commun. Korean Math. Soc., 30 (2015), 123–130.
  • [11] B. Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl., 19 (2014), 13–21.
  • [12] S. Deshmukh, H. Al-Sodais, H. Alodan, A note on Ricci solitons, Balkan J. Geom. Appl., 16 (2011), 48–55.
  • [13] C. He, M. Zhu, Ricci solitons on Sasakian manifolds, arxiv:1109.4407V2, [Math DG], (2011).
  • [14] M. Atçeken, T. Mert, P. Uygun, Ricci-Pseudosymmetric (LCS)n􀀀manifolds admitting almost h􀀀Ricci solitons, Asian Journal of Math. and Computer Research, 29(2), (2022), 23–32.
  • [15] H. Nagaraja, C. R. Premalatta, Ricci solitons in Kenmotsu manifolds, J. Math. Analysis, 3(2), (2012), 18–24.
  • [16] M. M. Tripathi, Ricci solitons in contact metric manifolds, arxiv:0801,4221 V1, [Math DG], (2008).
  • [17] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Volume 203 of Progress in Mathematics, Birkhauser Boston, Inc., Boston, MA, USA, 2nd edition, 2010.
  • [18] P. Alegre, D.E. Blair, A. Carriazo, Generalized Sasakian space form, Israel Journal of Mathematics, 141 (2004), 157–183.
  • [19] P. Alegre, A. Carriazo, Semi-Riemannian generalized Sasakian space forms, Bulletin of the Malaysian Mathematical Sciences Society, 41(1) (2001), 1–14.
  • [20] J. T Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61 (2) (2009), 205–212.
Year 2023, , 76 - 85, 01.07.2023
https://doi.org/10.32323/ujma.1282831

Abstract

References

  • [1] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Mathematics, (2002), 1–39.
  • [2] G. Perelman, Ricci flow with surgery on three-manifolds, http://arXiv.org/abs/math/0303109, (2003), 1–22.
  • [3] R. Sharma, Certain results on k-contact and (k;m)􀀀contact manifolds, J. Geom., 89 (2008), 138–147.
  • [4] S. R. Ashoka, C. S. Bagewadi, G. Ingalahalli, Certain results on Ricci Solitons in a-Sasakian manifolds, Hindawi Publ. Corporation, Geometry, 2013, Article ID 573925, (2013), 4 Pages.
  • [5] S. R. Ashoka, C. S. Bagewadi, G. Ingalahalli, A geometry on Ricci solitons in (LCS)n manifolds, Diff. Geom.-Dynamical Systems, 16 (2014), 50–62.
  • [6] C. S. Bagewadi, G. Ingalahalli, Ricci solitons in Lorentzian-Sasakian manifolds, Acta Math. Acad. Paeda. Nyire., 28 (2012), 59–68.
  • [7] G. Ingalahalli, C. S. Bagewadi, Ricci solitons in a-Sasakian manifolds, ISRN Geometry, 2012, Article ID 421384, (2012), 13 Pages.
  • [8] C. L. Bejan, M. Crasmareanu, Ricci Solitons in manifolds with quasi-contact curvature, Publ. Math. Debrecen, 78 (2011), 235–243.
  • [9] A. M. Blaga, h-Ricci solitons on para-kenmotsu manifolds, Balkan J. Geom. Appl., 20 (2015), 1–13.
  • [10] S. Chandra, S. K. Hui, A. A. Shaikh, Second order parallel tensors and Ricci solitons on (LCS)n-manifolds, Commun. Korean Math. Soc., 30 (2015), 123–130.
  • [11] B. Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl., 19 (2014), 13–21.
  • [12] S. Deshmukh, H. Al-Sodais, H. Alodan, A note on Ricci solitons, Balkan J. Geom. Appl., 16 (2011), 48–55.
  • [13] C. He, M. Zhu, Ricci solitons on Sasakian manifolds, arxiv:1109.4407V2, [Math DG], (2011).
  • [14] M. Atçeken, T. Mert, P. Uygun, Ricci-Pseudosymmetric (LCS)n􀀀manifolds admitting almost h􀀀Ricci solitons, Asian Journal of Math. and Computer Research, 29(2), (2022), 23–32.
  • [15] H. Nagaraja, C. R. Premalatta, Ricci solitons in Kenmotsu manifolds, J. Math. Analysis, 3(2), (2012), 18–24.
  • [16] M. M. Tripathi, Ricci solitons in contact metric manifolds, arxiv:0801,4221 V1, [Math DG], (2008).
  • [17] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Volume 203 of Progress in Mathematics, Birkhauser Boston, Inc., Boston, MA, USA, 2nd edition, 2010.
  • [18] P. Alegre, D.E. Blair, A. Carriazo, Generalized Sasakian space form, Israel Journal of Mathematics, 141 (2004), 157–183.
  • [19] P. Alegre, A. Carriazo, Semi-Riemannian generalized Sasakian space forms, Bulletin of the Malaysian Mathematical Sciences Society, 41(1) (2001), 1–14.
  • [20] J. T Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61 (2) (2009), 205–212.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Fadime Gökçe 0000-0003-1819-3317

Publication Date July 1, 2023
Submission Date April 13, 2023
Acceptance Date June 30, 2023
Published in Issue Year 2023

Cite

APA Gökçe, F. (2023). Characterizations of Matrix and Compact Operators on BK Spaces. Universal Journal of Mathematics and Applications, 6(2), 76-85. https://doi.org/10.32323/ujma.1282831
AMA Gökçe F. Characterizations of Matrix and Compact Operators on BK Spaces. Univ. J. Math. Appl. July 2023;6(2):76-85. doi:10.32323/ujma.1282831
Chicago Gökçe, Fadime. “Characterizations of Matrix and Compact Operators on BK Spaces”. Universal Journal of Mathematics and Applications 6, no. 2 (July 2023): 76-85. https://doi.org/10.32323/ujma.1282831.
EndNote Gökçe F (July 1, 2023) Characterizations of Matrix and Compact Operators on BK Spaces. Universal Journal of Mathematics and Applications 6 2 76–85.
IEEE F. Gökçe, “Characterizations of Matrix and Compact Operators on BK Spaces”, Univ. J. Math. Appl., vol. 6, no. 2, pp. 76–85, 2023, doi: 10.32323/ujma.1282831.
ISNAD Gökçe, Fadime. “Characterizations of Matrix and Compact Operators on BK Spaces”. Universal Journal of Mathematics and Applications 6/2 (July 2023), 76-85. https://doi.org/10.32323/ujma.1282831.
JAMA Gökçe F. Characterizations of Matrix and Compact Operators on BK Spaces. Univ. J. Math. Appl. 2023;6:76–85.
MLA Gökçe, Fadime. “Characterizations of Matrix and Compact Operators on BK Spaces”. Universal Journal of Mathematics and Applications, vol. 6, no. 2, 2023, pp. 76-85, doi:10.32323/ujma.1282831.
Vancouver Gökçe F. Characterizations of Matrix and Compact Operators on BK Spaces. Univ. J. Math. Appl. 2023;6(2):76-85.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.