Research Article
BibTex RIS Cite

Generalized Zagreb index of some dendrimer structures

Year 2018, , 160 - 165, 30.09.2018
https://doi.org/10.32323/ujma.425103

Abstract

Chemical graph theory, is a branch of mathematical chemistry which deals with the nontrivial applications of graph theory to solve molecular problem. A chemical graph is represent a molecule by considering the atoms as the vertices and bonds between them as the edges. A topological index is a graph based molecular descriptor, which is graph theoretic invariant characterising some physicochemical properties of chemical compounds. Dendrimers are generally large, complex, and hyper branched molecules synthesized by repeatable steps with nanometre scale measurements. In this paper, we study the $(a,b)$-Zagreb index of some regular dendrimers and hence obtain some vertex degree based topological indices.

References

  • [1] D.A. Tomalia, H. Baker, J.R. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeek, J. Ryder, and P. Smith, A new class of polynomials: starburst-dendriticmacromolecules, Polym. J., 17, (1985), 117-132.
  • [2] U. Ahmad, S. Ahmad, and R. Yousaf, Computation of Zagreb and atom–bond connectivity indices of certain families of dendrimers by usingautomorphism group action, J. Serb. Chem. Soc., 82, (2),(2017), 151-162.
  • [3] Y. Bashir, A. Aslam, M. Kamran, M.I. Qureshi, A. Jahangir, M. Rafiq, N. Bibi, and N. Muhammad, On forgotten topological indices of some dendrimersstructure, Molecules, 22, (867), (2017), 1-8.
  • [4] I. Gutman, N. Trinajesti´c, Graph theory and molecular orbitals total -electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17, (1972),535-538.
  • [5] N. De, The vertex Zagreb indices of some graphs operations, Carpathian Math. Publ., 8, (2), (2016), 215-223.
  • [6] P. Sarkar, N. De, and A. Pal, The Zagreb indices of graphs based on new operations related to the join of graphs, J. Int. Math. Virtual Inst., 7,(2017),181-209.
  • [7] P. Sarkar, N. De., and A. Pal, F-index of graphs based on new operations related to the join of graphs, arXiv:1709.06301v1.
  • [8] N. De, On molecular topological properties of TiO2 nanotubes, J. Nanoscience, 2016, (2016), DOI: 1028031.
  • [9] S. Akhtar, M. Imran, Computing the forgotten topological index of four operations on graphs, AKCE Int. J. Graphs Comb., 14, (1), (2017), 70-79.
  • [10] P.S. Ranjini, V. Lokesha, and A. Usha, Relation between phenylene and hexagonal squeeze using harmonic index, Int. J. Graph Theory, 1,(2013),116-121.
  • [11] B. Zhao, J. Gan, and H. Wu, Redefined Zagreb indices of some nano structures, Appl. Math. Nonlinear Sci., 1, (1), (2016), 291-300.
  • [12] R.P. Kumar, D.S. Nandappa, and M.R.R. Kanna, Redefined zagreb, Randi´c, Harmonic, GA indices of graphene, Int. J. Math. Anal., 11, (10), (2017),493-502.
  • [13] X. Li, J. Zheng, A unified approach to the extremal trees for di erent indices, MATCH Commun. Math. Comput. Chem., 54, (2005), 195-208.
  • [14] I. Gutman, M. Lepovi´c, Choosing the exponent in the definition of the connectivity index, J. Serb. Chem. Soc., 66,(9),(2001), 605-611.
  • [15] V. Lokesha, T. Deepika, Symmetric division deg index of tricyclic and tetracyclic graphs, Int. J. Sci. Eng. Res, 7, (5), (2016), 53-55.
  • [16] V. Alexander, Upper and lower bounds of symmetric division deg index, Iran. J. Math. Chem., 52, (2014), 91-98.
  • [17] C.K. Gupta, V. Lokesha, B.S. Shwetha, and P.S. Ranjini, Graph operations on the symmetric division deg index of graphs, Palestine. J. Math., 6, (1),(2017), 280-286.
  • [18] M. Azari, A. Iranmanesh, Generalized Zagreb index of graphs, Studia Univ. Babes-Bolyai., 56,(3), (2011), 59-70.
  • [19] M. R. Farahani, The generalized Zagreb index of circumcoronene series of benzenoid, J. Appl. Phys. Sci. Int., 3,(3), (2015), 99-105.
  • [20] P. Sarkar, N. De, and A. Pal, The (a,b)-Zagreb index of nanostar dendrimers, preprint.[21] M. R. Farahani, M. R. R. Kanna, Generalized Zagreb index of V-phenylenic nanotubes and nanotori, J. Chem. Pharm. Res., 7,(11), (2015), 241-245.
Year 2018, , 160 - 165, 30.09.2018
https://doi.org/10.32323/ujma.425103

Abstract

References

  • [1] D.A. Tomalia, H. Baker, J.R. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeek, J. Ryder, and P. Smith, A new class of polynomials: starburst-dendriticmacromolecules, Polym. J., 17, (1985), 117-132.
  • [2] U. Ahmad, S. Ahmad, and R. Yousaf, Computation of Zagreb and atom–bond connectivity indices of certain families of dendrimers by usingautomorphism group action, J. Serb. Chem. Soc., 82, (2),(2017), 151-162.
  • [3] Y. Bashir, A. Aslam, M. Kamran, M.I. Qureshi, A. Jahangir, M. Rafiq, N. Bibi, and N. Muhammad, On forgotten topological indices of some dendrimersstructure, Molecules, 22, (867), (2017), 1-8.
  • [4] I. Gutman, N. Trinajesti´c, Graph theory and molecular orbitals total -electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17, (1972),535-538.
  • [5] N. De, The vertex Zagreb indices of some graphs operations, Carpathian Math. Publ., 8, (2), (2016), 215-223.
  • [6] P. Sarkar, N. De, and A. Pal, The Zagreb indices of graphs based on new operations related to the join of graphs, J. Int. Math. Virtual Inst., 7,(2017),181-209.
  • [7] P. Sarkar, N. De., and A. Pal, F-index of graphs based on new operations related to the join of graphs, arXiv:1709.06301v1.
  • [8] N. De, On molecular topological properties of TiO2 nanotubes, J. Nanoscience, 2016, (2016), DOI: 1028031.
  • [9] S. Akhtar, M. Imran, Computing the forgotten topological index of four operations on graphs, AKCE Int. J. Graphs Comb., 14, (1), (2017), 70-79.
  • [10] P.S. Ranjini, V. Lokesha, and A. Usha, Relation between phenylene and hexagonal squeeze using harmonic index, Int. J. Graph Theory, 1,(2013),116-121.
  • [11] B. Zhao, J. Gan, and H. Wu, Redefined Zagreb indices of some nano structures, Appl. Math. Nonlinear Sci., 1, (1), (2016), 291-300.
  • [12] R.P. Kumar, D.S. Nandappa, and M.R.R. Kanna, Redefined zagreb, Randi´c, Harmonic, GA indices of graphene, Int. J. Math. Anal., 11, (10), (2017),493-502.
  • [13] X. Li, J. Zheng, A unified approach to the extremal trees for di erent indices, MATCH Commun. Math. Comput. Chem., 54, (2005), 195-208.
  • [14] I. Gutman, M. Lepovi´c, Choosing the exponent in the definition of the connectivity index, J. Serb. Chem. Soc., 66,(9),(2001), 605-611.
  • [15] V. Lokesha, T. Deepika, Symmetric division deg index of tricyclic and tetracyclic graphs, Int. J. Sci. Eng. Res, 7, (5), (2016), 53-55.
  • [16] V. Alexander, Upper and lower bounds of symmetric division deg index, Iran. J. Math. Chem., 52, (2014), 91-98.
  • [17] C.K. Gupta, V. Lokesha, B.S. Shwetha, and P.S. Ranjini, Graph operations on the symmetric division deg index of graphs, Palestine. J. Math., 6, (1),(2017), 280-286.
  • [18] M. Azari, A. Iranmanesh, Generalized Zagreb index of graphs, Studia Univ. Babes-Bolyai., 56,(3), (2011), 59-70.
  • [19] M. R. Farahani, The generalized Zagreb index of circumcoronene series of benzenoid, J. Appl. Phys. Sci. Int., 3,(3), (2015), 99-105.
  • [20] P. Sarkar, N. De, and A. Pal, The (a,b)-Zagreb index of nanostar dendrimers, preprint.[21] M. R. Farahani, M. R. R. Kanna, Generalized Zagreb index of V-phenylenic nanotubes and nanotori, J. Chem. Pharm. Res., 7,(11), (2015), 241-245.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Prosanta Sarkar This is me

Nilanjan De 0000-0001-9143-7045

İsmail Naci Cangül

Anita Pal This is me

Publication Date September 30, 2018
Submission Date May 18, 2018
Acceptance Date September 8, 2018
Published in Issue Year 2018

Cite

APA Sarkar, P., De, N., Cangül, İ. N., Pal, A. (2018). Generalized Zagreb index of some dendrimer structures. Universal Journal of Mathematics and Applications, 1(3), 160-165. https://doi.org/10.32323/ujma.425103
AMA Sarkar P, De N, Cangül İN, Pal A. Generalized Zagreb index of some dendrimer structures. Univ. J. Math. Appl. September 2018;1(3):160-165. doi:10.32323/ujma.425103
Chicago Sarkar, Prosanta, Nilanjan De, İsmail Naci Cangül, and Anita Pal. “Generalized Zagreb Index of Some Dendrimer Structures”. Universal Journal of Mathematics and Applications 1, no. 3 (September 2018): 160-65. https://doi.org/10.32323/ujma.425103.
EndNote Sarkar P, De N, Cangül İN, Pal A (September 1, 2018) Generalized Zagreb index of some dendrimer structures. Universal Journal of Mathematics and Applications 1 3 160–165.
IEEE P. Sarkar, N. De, İ. N. Cangül, and A. Pal, “Generalized Zagreb index of some dendrimer structures”, Univ. J. Math. Appl., vol. 1, no. 3, pp. 160–165, 2018, doi: 10.32323/ujma.425103.
ISNAD Sarkar, Prosanta et al. “Generalized Zagreb Index of Some Dendrimer Structures”. Universal Journal of Mathematics and Applications 1/3 (September 2018), 160-165. https://doi.org/10.32323/ujma.425103.
JAMA Sarkar P, De N, Cangül İN, Pal A. Generalized Zagreb index of some dendrimer structures. Univ. J. Math. Appl. 2018;1:160–165.
MLA Sarkar, Prosanta et al. “Generalized Zagreb Index of Some Dendrimer Structures”. Universal Journal of Mathematics and Applications, vol. 1, no. 3, 2018, pp. 160-5, doi:10.32323/ujma.425103.
Vancouver Sarkar P, De N, Cangül İN, Pal A. Generalized Zagreb index of some dendrimer structures. Univ. J. Math. Appl. 2018;1(3):160-5.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.