Research Article
BibTex RIS Cite

Sasakian Statistical Manifolds with Semi-Symmetric Metric Connection

Year 2018, , 226 - 232, 20.12.2018
https://doi.org/10.32323/ujma.439013

Abstract

In the present paper, firstly we express the relation between the semi-symmetric metric connection $\tilde{\nabla}$ and the torsion-free connection $\nabla$ and obtain the relation between the curvature tensors $\tilde{R}$ of $\tilde{\nabla}$ and $R$ of $\nabla$. After, we obtain these relations for $\tilde{\nabla}$ and the dual connection $\nabla^{\ast}.$ Also, we give the relations between the curvature tensor $\tilde{R}$ of semi-symmetric metric connection $\tilde{\nabla}$ and the curvature tensors $R$ and $R^{\ast}$ of the connections $\nabla$ and $\nabla^{\ast}$ on Sasakian statistical manifolds, respectively. We obtain the relations between the Ricci tensor (and scalar curvature) of semi-symmetric metric connection $\tilde{\nabla}$ and the Ricci tensors (and scalar curvatures) of the connections $\nabla$ and $\nabla^{\ast}.$ Finally, we construct an example of a 3-dimensional Sasakian manifold with statistical structure admitting the semi-symmetric metric connection in order to verify our results.

References

  • [1] C.R. Rao, Information and accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc., 37 (1945), 81–91.
  • [2] N. Ay, W. Tuschmann, Dually flat manifolds and global information geometry, Open Syst. Inf. Dyn., 9 (2002), 195-200.
  • [3] A. S. Diallo, L. Todjihounde, Dualistic structures on twisted product manifolds, Global J. Adv. Res. Cl. Mod. Geom., 4(1) (2015), 35-43.
  • [4] S. Amari, Differential-geometrical methods in statistics, Lecture Notes in Statist., 28, Springer, New York, 1985.
  • [5] A. M. Blaga, M. Crasmareanu, Golden statistical structures, Comptes rendus de l’Acad emie bulgare des Sci., 69(9) (2016), 1113-1120.
  • [6] O. Calin, C. Udris¸te, Geometric modeling in probability and statistics, Springer, 2014.
  • [7] H. Furuhata, Hypersurfaces in statistical manifolds, Differential Geom. Appl., 27 (2009), 420-429.
  • [8] T. Kurose, Dual connections and affine geometry, Math. Z., 203 (1990), 115-121.
  • [9] H. Matsuzoe, J. I. Takeuchi, S. I. Amari, Equiaffine structures on statistical manifolds and Bayesian statistics, Differential Geom. Appl., 24 (2006), 567–578.
  • [10] M. Noguchi, Geometry of statistical manifolds, Differential Geom. Appl., 2 (1992), 197-222.
  • [11] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure, I, Tohoku Math. J., 12(2), (1960), 459–476.
  • [12] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93–103.
  • [13] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985), 187-193.
  • [14] A. D. Vilcu, G. E. Vilcu, Statistical manifolds with almost quaternionic structures and quaternionic Kahler-like statistical submersions, Entropy, 17 (2015), 6213-6228.
  • [15] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys., 117 (2017), 179-186.
  • [16] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, Kenmotsu statistical manifolds and warped product, J. Geom., (2017), doi: 10.1007/s00022-017-0403-1.
  • [17] J. Zhang, A note on curvature of a-connections of a statistical manifold, Ann. Inst. Statist. Math., 59 (2007), 161-170.
  • [18] H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc. II Series, 34 (1932), 27–50.
  • [19] A. Friedmann, J. A. Schouten, U¨ ber die geometric der halbsymmetrischen U¨ bertragung, Math. Z., 21 (1924), 211–223.
  • [20] D. E. Blair, Contact manifolds in Riemannian geometry, Lect. Notes Math., 509, Springer, 1976.
  • [21] K. Yano, On semi-symmetric connection, Rev. Roumaine Math. Pures Appl., 15 (1970), 1570–1586.
Year 2018, , 226 - 232, 20.12.2018
https://doi.org/10.32323/ujma.439013

Abstract

References

  • [1] C.R. Rao, Information and accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc., 37 (1945), 81–91.
  • [2] N. Ay, W. Tuschmann, Dually flat manifolds and global information geometry, Open Syst. Inf. Dyn., 9 (2002), 195-200.
  • [3] A. S. Diallo, L. Todjihounde, Dualistic structures on twisted product manifolds, Global J. Adv. Res. Cl. Mod. Geom., 4(1) (2015), 35-43.
  • [4] S. Amari, Differential-geometrical methods in statistics, Lecture Notes in Statist., 28, Springer, New York, 1985.
  • [5] A. M. Blaga, M. Crasmareanu, Golden statistical structures, Comptes rendus de l’Acad emie bulgare des Sci., 69(9) (2016), 1113-1120.
  • [6] O. Calin, C. Udris¸te, Geometric modeling in probability and statistics, Springer, 2014.
  • [7] H. Furuhata, Hypersurfaces in statistical manifolds, Differential Geom. Appl., 27 (2009), 420-429.
  • [8] T. Kurose, Dual connections and affine geometry, Math. Z., 203 (1990), 115-121.
  • [9] H. Matsuzoe, J. I. Takeuchi, S. I. Amari, Equiaffine structures on statistical manifolds and Bayesian statistics, Differential Geom. Appl., 24 (2006), 567–578.
  • [10] M. Noguchi, Geometry of statistical manifolds, Differential Geom. Appl., 2 (1992), 197-222.
  • [11] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure, I, Tohoku Math. J., 12(2), (1960), 459–476.
  • [12] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93–103.
  • [13] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985), 187-193.
  • [14] A. D. Vilcu, G. E. Vilcu, Statistical manifolds with almost quaternionic structures and quaternionic Kahler-like statistical submersions, Entropy, 17 (2015), 6213-6228.
  • [15] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys., 117 (2017), 179-186.
  • [16] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, Kenmotsu statistical manifolds and warped product, J. Geom., (2017), doi: 10.1007/s00022-017-0403-1.
  • [17] J. Zhang, A note on curvature of a-connections of a statistical manifold, Ann. Inst. Statist. Math., 59 (2007), 161-170.
  • [18] H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc. II Series, 34 (1932), 27–50.
  • [19] A. Friedmann, J. A. Schouten, U¨ ber die geometric der halbsymmetrischen U¨ bertragung, Math. Z., 21 (1924), 211–223.
  • [20] D. E. Blair, Contact manifolds in Riemannian geometry, Lect. Notes Math., 509, Springer, 1976.
  • [21] K. Yano, On semi-symmetric connection, Rev. Roumaine Math. Pures Appl., 15 (1970), 1570–1586.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ahmet Kazan

Sema Kazan

Publication Date December 20, 2018
Submission Date June 29, 2018
Acceptance Date August 3, 2018
Published in Issue Year 2018

Cite

APA Kazan, A., & Kazan, S. (2018). Sasakian Statistical Manifolds with Semi-Symmetric Metric Connection. Universal Journal of Mathematics and Applications, 1(4), 226-232. https://doi.org/10.32323/ujma.439013
AMA Kazan A, Kazan S. Sasakian Statistical Manifolds with Semi-Symmetric Metric Connection. Univ. J. Math. Appl. December 2018;1(4):226-232. doi:10.32323/ujma.439013
Chicago Kazan, Ahmet, and Sema Kazan. “Sasakian Statistical Manifolds With Semi-Symmetric Metric Connection”. Universal Journal of Mathematics and Applications 1, no. 4 (December 2018): 226-32. https://doi.org/10.32323/ujma.439013.
EndNote Kazan A, Kazan S (December 1, 2018) Sasakian Statistical Manifolds with Semi-Symmetric Metric Connection. Universal Journal of Mathematics and Applications 1 4 226–232.
IEEE A. Kazan and S. Kazan, “Sasakian Statistical Manifolds with Semi-Symmetric Metric Connection”, Univ. J. Math. Appl., vol. 1, no. 4, pp. 226–232, 2018, doi: 10.32323/ujma.439013.
ISNAD Kazan, Ahmet - Kazan, Sema. “Sasakian Statistical Manifolds With Semi-Symmetric Metric Connection”. Universal Journal of Mathematics and Applications 1/4 (December 2018), 226-232. https://doi.org/10.32323/ujma.439013.
JAMA Kazan A, Kazan S. Sasakian Statistical Manifolds with Semi-Symmetric Metric Connection. Univ. J. Math. Appl. 2018;1:226–232.
MLA Kazan, Ahmet and Sema Kazan. “Sasakian Statistical Manifolds With Semi-Symmetric Metric Connection”. Universal Journal of Mathematics and Applications, vol. 1, no. 4, 2018, pp. 226-32, doi:10.32323/ujma.439013.
Vancouver Kazan A, Kazan S. Sasakian Statistical Manifolds with Semi-Symmetric Metric Connection. Univ. J. Math. Appl. 2018;1(4):226-32.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.