Research Article
BibTex RIS Cite

Year 2019, Volume: 2 Issue: 2, 59 - 64, 28.06.2019
https://doi.org/10.32323/ujma.473514

Abstract

References

  • [1] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, American Math. Monthly 70(1963), 289-291.
  • [2] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Proc., New York-Toronto, 2001.
  • [3] S. Vajda, Fibonacci and Lucas Numbers the Golden Section, Ellis Horrowood Limited Publ., England, 1989.
  • [4] G. Berzsenyi, Sums of Product of Generalized Fibonacci Numbers, Fibonacci Quart., 13(4), (1975), 343-344.
  • [5] A. F. Horadam, A Generalized Fibonacci sequence, American Math. Monthly, 68, (1961), 455-459.
  • [6] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3(3), (1965), 161-176.
  • [7] M. R. Iyer, Identities involving generalized Fibonacci numbers, Fibonacci Quart., 7(1), (1969), 66-73.
  • [8] J. E. Walton and A. F. Horadam, Some further identities for the generalized Fibonacci sequence, Fibonacci Quart., 12(3), (1974), 272-280.
  • [9] F. Catoni, R. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti and P. Zampatti, The Mathematics of Minkowski Space-Time, Birkhauser, Basel, 2008.
  • [10] H. Gargoubi and S. Kossentini, f-algebra structure on hyperbolic numbers, Adv. Appl. Clifford Algebr., 26(4), (2016), 1211-1233.
  • [11] A. E. Motter and A. F. Rosa, Hyperbolic calculus, Adv. Appl. Clifford Algebr., 8(1), (1998), 109-128.
  • [12] B. Jancewicz, The extended Grassmann algebra of R3, in Clifford (Geometric) Algebras with Applications and Engineering, Birkhauser, Boston, (1996), 389-421.
  • [13] D. Khadjiev and Y. Göksal, Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space, Adv. Appl. Clifford Algebr., 26, (2016), 645-668.
  • [14] A. N. Güncan and Y. Erbil, The q-Fibonacci hyperbolic functions, Appl. Math. Inf. Sci. 8 (1L), (2014), 81-88.
  • [15] L. Barreira, L. H. Popescu and C. Valls, Hyperbolic Sequences of Linear Operators and Evolution Maps, Milan J. Math., 84, (2016), 203-216.
  • [16] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, 1994.
  • [17] K. Akutagawa and S. Nishikawa, The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Th¨oko Math., J., 42, (1990), 67-82.

Hyperbolic Fibonacci Sequence

Year 2019, Volume: 2 Issue: 2, 59 - 64, 28.06.2019
https://doi.org/10.32323/ujma.473514

Abstract

In this paper, we investigate the hyperbolic Fibonacci sequence and the hyperbolic Fibonacci numbers. Furthermore, we give recurrence relations, the golden ratio and Binet's formula for the hyperbolic Fibonacci sequence and Lorentzian inner product, cross product and mixed product for the hyperbolic Fibonacci vectors.

References

  • [1] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, American Math. Monthly 70(1963), 289-291.
  • [2] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Proc., New York-Toronto, 2001.
  • [3] S. Vajda, Fibonacci and Lucas Numbers the Golden Section, Ellis Horrowood Limited Publ., England, 1989.
  • [4] G. Berzsenyi, Sums of Product of Generalized Fibonacci Numbers, Fibonacci Quart., 13(4), (1975), 343-344.
  • [5] A. F. Horadam, A Generalized Fibonacci sequence, American Math. Monthly, 68, (1961), 455-459.
  • [6] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3(3), (1965), 161-176.
  • [7] M. R. Iyer, Identities involving generalized Fibonacci numbers, Fibonacci Quart., 7(1), (1969), 66-73.
  • [8] J. E. Walton and A. F. Horadam, Some further identities for the generalized Fibonacci sequence, Fibonacci Quart., 12(3), (1974), 272-280.
  • [9] F. Catoni, R. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti and P. Zampatti, The Mathematics of Minkowski Space-Time, Birkhauser, Basel, 2008.
  • [10] H. Gargoubi and S. Kossentini, f-algebra structure on hyperbolic numbers, Adv. Appl. Clifford Algebr., 26(4), (2016), 1211-1233.
  • [11] A. E. Motter and A. F. Rosa, Hyperbolic calculus, Adv. Appl. Clifford Algebr., 8(1), (1998), 109-128.
  • [12] B. Jancewicz, The extended Grassmann algebra of R3, in Clifford (Geometric) Algebras with Applications and Engineering, Birkhauser, Boston, (1996), 389-421.
  • [13] D. Khadjiev and Y. Göksal, Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space, Adv. Appl. Clifford Algebr., 26, (2016), 645-668.
  • [14] A. N. Güncan and Y. Erbil, The q-Fibonacci hyperbolic functions, Appl. Math. Inf. Sci. 8 (1L), (2014), 81-88.
  • [15] L. Barreira, L. H. Popescu and C. Valls, Hyperbolic Sequences of Linear Operators and Evolution Maps, Milan J. Math., 84, (2016), 203-216.
  • [16] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, 1994.
  • [17] K. Akutagawa and S. Nishikawa, The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Th¨oko Math., J., 42, (1990), 67-82.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Fügen Torunbalcı Aydın 0000-0002-4953-1078

Submission Date October 22, 2018
Acceptance Date January 23, 2019
Publication Date June 28, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Torunbalcı Aydın, F. (2019). Hyperbolic Fibonacci Sequence. Universal Journal of Mathematics and Applications, 2(2), 59-64. https://doi.org/10.32323/ujma.473514
AMA Torunbalcı Aydın F. Hyperbolic Fibonacci Sequence. Univ. J. Math. Appl. June 2019;2(2):59-64. doi:10.32323/ujma.473514
Chicago Torunbalcı Aydın, Fügen. “Hyperbolic Fibonacci Sequence”. Universal Journal of Mathematics and Applications 2, no. 2 (June 2019): 59-64. https://doi.org/10.32323/ujma.473514.
EndNote Torunbalcı Aydın F (June 1, 2019) Hyperbolic Fibonacci Sequence. Universal Journal of Mathematics and Applications 2 2 59–64.
IEEE F. Torunbalcı Aydın, “Hyperbolic Fibonacci Sequence”, Univ. J. Math. Appl., vol. 2, no. 2, pp. 59–64, 2019, doi: 10.32323/ujma.473514.
ISNAD Torunbalcı Aydın, Fügen. “Hyperbolic Fibonacci Sequence”. Universal Journal of Mathematics and Applications 2/2 (June2019), 59-64. https://doi.org/10.32323/ujma.473514.
JAMA Torunbalcı Aydın F. Hyperbolic Fibonacci Sequence. Univ. J. Math. Appl. 2019;2:59–64.
MLA Torunbalcı Aydın, Fügen. “Hyperbolic Fibonacci Sequence”. Universal Journal of Mathematics and Applications, vol. 2, no. 2, 2019, pp. 59-64, doi:10.32323/ujma.473514.
Vancouver Torunbalcı Aydın F. Hyperbolic Fibonacci Sequence. Univ. J. Math. Appl. 2019;2(2):59-64.

Cited By

Hyperbolic Jacobsthal-Lucas Sequence
Fundamental Journal of Mathematics and Applications
https://doi.org/10.33401/fujma.958524

Split complex bi-periodic Fibonacci and Lucas numbers
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.704435




Unrestricted Fibonacci and Lucas quaternions
Fundamental Journal of Mathematics and Applications
https://doi.org/10.33401/fujma.752758




 23181

Universal Journal of Mathematics and Applications 

29207               

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.