Research Article
BibTex RIS Cite
Year 2020, , 33 - 37, 25.03.2020
https://doi.org/10.32323/ujma.615166

Abstract

References

  • [1] L.A. Zadeh, Fuzzy sets, Inf. Comp., 8, (1965), 338–353.
  • [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, (1986), 87–96.
  • [3] D. Molodtsov, Soft Set Theory-First Results, Comput. Math. Appl., 37, (1999), 19–31.
  • [4] R. R. Yager, Pythagorean fuzzy subsets, In: Proc Joint IFSA World Congress and NAFIPS Annual M eeting, Edmonton, Canada; (2013), 57–61.
  • [5] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans Fuzzy Syst., 22, (2014), 958–965.
  • [6] R.R. Yager, Properties and applications of Pyhagorean fuzzy sets, in Imprecision and Uncertainty in Information Representation and Processing, Springer, Berlin, (2016), 119–136.
  • [7] X. Peng, Y. Yang, J. Song, Y. Jiang, Pythagorean fuzzy soft set and its application, Computer Engineering, 41(7), (2015), 224–229.
  • [8] M. Kiris¸ci, New type Pythagorean fuzzy soft set and decision-making application, https://arxiv.org/pdf/1904.04064.pdf.
  • [9] XL Zhang , ZS Xu, Extension of TOPSIS to multi-criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29, (2014), 1061–1078.
  • [10] P. K. Maji, R. Biswas, A. R. Roy, Intuitionistic fuzzy soft sets, The journal of fuzzy mathematics, 9, (2001), 677–692.
  • [11] S. Broumi, Q-Intuitionistic fuzzy soft sets, Journal of New Theory, 5, (2015), 80-91.
  • [12] S. Broumi, F. Smarandache, M. Dhar, P. Majumdar, New results of intuitionistic fuzzy soft set, I.J. Information Engineering and Electronic Business, 2, (2014), 47–52.
  • [13] S. Broumi, P. Majumdar, F. Smarandache, New Operations on Intuitionistic Fuzzy Soft Sets Based on First Zadeh’s Logical Operators, Journal of New Results in Sciences, 4, (2014), 71–81.
  • [14] S. Broumi, P. Majumdar, F. Smarandache, New Operations on Intuitionistic Fuzzy Soft Sets based on Second Zadeh’s logical Operators, 5, (2015), 80–91.
  • [15] P.K. Maji, More on Intuitionistic Fuzzy Soft Sets. In: Sakai H., Chakraborty M.K., Hassanien A.E., Slezak D., Zhu W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science, vol 5908. Springer, Berlin, Heidelberg, (2009).
  • [16] Z. Zhang, A rough set approach to intuitionistic fuzzy soft set based decision making, Applied Mathematical Modelling, 36, (2012), 44605–4633.
  • [17] S. Ghsoh, S. Das, Parameter reduction of intuitionistic fuzzy soft sets and its related algorithms, Proceedings of the 4th International Conference on Frontiers in intelligent computing: Theory and Applications(FICTA) (2015).
  • [18] M. Kirişçi, Comparison the medical decision-making with Intuitionistic fuzzy parameterized fuzzy soft set and Riesz Summability, New Mathematics and Natural Computation, 15(2), (2019), 351–359. doi: 10.1142/S1793005719500194.
  • [19] Yager RR, Abbasov AM. Pythagorean membership grades, complex numbers, and decision making. Int J Intell Syst 2014;28:436–452.
  • [20] H. Garg, A New Generalized Pythagorean Fuzzy Information Aggregation Using Einstein Operations and Its Application to Decision Making, Int J Intell Syst, 31, (2016), 886–920.

Parameter Reduction Method for Pythagorean Fuzzy Soft Sets

Year 2020, , 33 - 37, 25.03.2020
https://doi.org/10.32323/ujma.615166

Abstract

The aim of this paper is to give new parameter reduction methods according to Pythagorean fuzzy soft sets. The reason for the definition of these methods is to help decision-makers facilitate their decision-making processes. The algorithm of the first method defined is related to the selection of some parameters. The second method determines the parameters with less deviation than the other parameters. Further, numerical examples related to the new algorithms are examined.

References

  • [1] L.A. Zadeh, Fuzzy sets, Inf. Comp., 8, (1965), 338–353.
  • [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, (1986), 87–96.
  • [3] D. Molodtsov, Soft Set Theory-First Results, Comput. Math. Appl., 37, (1999), 19–31.
  • [4] R. R. Yager, Pythagorean fuzzy subsets, In: Proc Joint IFSA World Congress and NAFIPS Annual M eeting, Edmonton, Canada; (2013), 57–61.
  • [5] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans Fuzzy Syst., 22, (2014), 958–965.
  • [6] R.R. Yager, Properties and applications of Pyhagorean fuzzy sets, in Imprecision and Uncertainty in Information Representation and Processing, Springer, Berlin, (2016), 119–136.
  • [7] X. Peng, Y. Yang, J. Song, Y. Jiang, Pythagorean fuzzy soft set and its application, Computer Engineering, 41(7), (2015), 224–229.
  • [8] M. Kiris¸ci, New type Pythagorean fuzzy soft set and decision-making application, https://arxiv.org/pdf/1904.04064.pdf.
  • [9] XL Zhang , ZS Xu, Extension of TOPSIS to multi-criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29, (2014), 1061–1078.
  • [10] P. K. Maji, R. Biswas, A. R. Roy, Intuitionistic fuzzy soft sets, The journal of fuzzy mathematics, 9, (2001), 677–692.
  • [11] S. Broumi, Q-Intuitionistic fuzzy soft sets, Journal of New Theory, 5, (2015), 80-91.
  • [12] S. Broumi, F. Smarandache, M. Dhar, P. Majumdar, New results of intuitionistic fuzzy soft set, I.J. Information Engineering and Electronic Business, 2, (2014), 47–52.
  • [13] S. Broumi, P. Majumdar, F. Smarandache, New Operations on Intuitionistic Fuzzy Soft Sets Based on First Zadeh’s Logical Operators, Journal of New Results in Sciences, 4, (2014), 71–81.
  • [14] S. Broumi, P. Majumdar, F. Smarandache, New Operations on Intuitionistic Fuzzy Soft Sets based on Second Zadeh’s logical Operators, 5, (2015), 80–91.
  • [15] P.K. Maji, More on Intuitionistic Fuzzy Soft Sets. In: Sakai H., Chakraborty M.K., Hassanien A.E., Slezak D., Zhu W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science, vol 5908. Springer, Berlin, Heidelberg, (2009).
  • [16] Z. Zhang, A rough set approach to intuitionistic fuzzy soft set based decision making, Applied Mathematical Modelling, 36, (2012), 44605–4633.
  • [17] S. Ghsoh, S. Das, Parameter reduction of intuitionistic fuzzy soft sets and its related algorithms, Proceedings of the 4th International Conference on Frontiers in intelligent computing: Theory and Applications(FICTA) (2015).
  • [18] M. Kirişçi, Comparison the medical decision-making with Intuitionistic fuzzy parameterized fuzzy soft set and Riesz Summability, New Mathematics and Natural Computation, 15(2), (2019), 351–359. doi: 10.1142/S1793005719500194.
  • [19] Yager RR, Abbasov AM. Pythagorean membership grades, complex numbers, and decision making. Int J Intell Syst 2014;28:436–452.
  • [20] H. Garg, A New Generalized Pythagorean Fuzzy Information Aggregation Using Einstein Operations and Its Application to Decision Making, Int J Intell Syst, 31, (2016), 886–920.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Murat Kirisci 0000-0003-4938-5207

Publication Date March 25, 2020
Submission Date September 4, 2019
Acceptance Date October 14, 2019
Published in Issue Year 2020

Cite

APA Kirisci, M. (2020). Parameter Reduction Method for Pythagorean Fuzzy Soft Sets. Universal Journal of Mathematics and Applications, 3(1), 33-37. https://doi.org/10.32323/ujma.615166
AMA Kirisci M. Parameter Reduction Method for Pythagorean Fuzzy Soft Sets. Univ. J. Math. Appl. March 2020;3(1):33-37. doi:10.32323/ujma.615166
Chicago Kirisci, Murat. “Parameter Reduction Method for Pythagorean Fuzzy Soft Sets”. Universal Journal of Mathematics and Applications 3, no. 1 (March 2020): 33-37. https://doi.org/10.32323/ujma.615166.
EndNote Kirisci M (March 1, 2020) Parameter Reduction Method for Pythagorean Fuzzy Soft Sets. Universal Journal of Mathematics and Applications 3 1 33–37.
IEEE M. Kirisci, “Parameter Reduction Method for Pythagorean Fuzzy Soft Sets”, Univ. J. Math. Appl., vol. 3, no. 1, pp. 33–37, 2020, doi: 10.32323/ujma.615166.
ISNAD Kirisci, Murat. “Parameter Reduction Method for Pythagorean Fuzzy Soft Sets”. Universal Journal of Mathematics and Applications 3/1 (March 2020), 33-37. https://doi.org/10.32323/ujma.615166.
JAMA Kirisci M. Parameter Reduction Method for Pythagorean Fuzzy Soft Sets. Univ. J. Math. Appl. 2020;3:33–37.
MLA Kirisci, Murat. “Parameter Reduction Method for Pythagorean Fuzzy Soft Sets”. Universal Journal of Mathematics and Applications, vol. 3, no. 1, 2020, pp. 33-37, doi:10.32323/ujma.615166.
Vancouver Kirisci M. Parameter Reduction Method for Pythagorean Fuzzy Soft Sets. Univ. J. Math. Appl. 2020;3(1):33-7.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.