Research Article
BibTex RIS Cite
Year 2020, , 12 - 18, 25.03.2020
https://doi.org/10.32323/ujma.634491

Abstract

References

  • [1] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424-438.
  • [2] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.
  • [3] A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT, 54 (2014), 937-954.
  • [4] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Differ. App., 1 (2015), 73-85.
  • [5] H. Hosseini, R. Ansari, New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method, Wave Random Complex, 27 (2017), 628-636.
  • [6] H. Jafari, N. Kadkhoda, D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonlinear Dyn., 81 (2015), 1569-1574.
  • [7] J. Jia, H. Wang, A fast finite volume method for conservative space-fractional diffusion equations in convex domains, J. Comput. Phys., 310 (2016), 63-84.
  • [8] J. Jia, H. Wang, Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions, J. Comput. Phys., 293 (2015), 359-369.
  • [9] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
  • [10] S-J Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC, Boca Raton, 2004.
  • [11] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.
  • [12] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), 23-28.
  • [13] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Frac. Calc. Appl. Anal., 4 (2001), 153-192.
  • [14] M. Meerschaert, Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80-90.
  • [15] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solutions and Some of their Applications, Academic Press, San Diego, 1999.
  • [16] F. Xu, Y. Gao, W. Zhang, Construction of analytic solution for time-fractional Boussinesq equation using iterative method, Adv. Math. Phys., 2015, Article ID 506140, 7 pages.
  • [17] Q. Xu, J.S. Hesthaven, Discontinuous Galerkin method for fractional convection-diffusion equations, SIAM J. Numer. Anal., 52 (2014), 405-423.
  • [18] M. Yavuz, N. Özdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal Fractional, 2 (2018), 1.
  • [19] M. Yavuz, N. Özdemir, On the solutions of fractional Cauchy problem featuring conformable derivative, Proceedings of ITM Web of Conferences, EDP Sciences, (2018), 01045.
  • [20] M. Yavuz, B. Yaşkiran, Homotopy methods for fractional linear/nonlinear differential equations with a local derivative operator, Balikesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20 (2018), 75-89.
  • [21] H. Yang, A new high-order method for the time-fractional diffusion equation with a source, J. Frac. Calc. Appl., 11 (2020), 111-129.
  • [22] H. Yang, J. Guo, J.-H. Jung, Schwartz duality of the Dirac delta function for the Chebyshev collocation approximation to the fractional advection equation, Appl. Math. Lett., 64 (2017), 205-212.
  • [23] F. Zeng, C. Li, F. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), A2976-A3000.
  • [24] H. Zhang, X. Jiang, M. Zhao, R. Zheng, Spectral method for solving the time fractional Boussinesq equation, Appl. Math. Lett., 85 (2018), 164-170.

Homotopy Analysis Method for the Time-Fractional Boussinesq Equation

Year 2020, , 12 - 18, 25.03.2020
https://doi.org/10.32323/ujma.634491

Abstract

In this paper, the exact and approximate analytical solutions to the time-fractional Boussinesq equation are constructed using the homotopy analysis method. Several examples about the fourth-order and sixth-order time-fractional Boussinesq equations show the flexibility and efficiency of the method. Furthermore, by choosing an appropriate value for the auxiliary parameter $h$, we can obtain the $N$-term approximate solution with improved accuracy.

References

  • [1] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424-438.
  • [2] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.
  • [3] A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT, 54 (2014), 937-954.
  • [4] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Differ. App., 1 (2015), 73-85.
  • [5] H. Hosseini, R. Ansari, New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method, Wave Random Complex, 27 (2017), 628-636.
  • [6] H. Jafari, N. Kadkhoda, D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonlinear Dyn., 81 (2015), 1569-1574.
  • [7] J. Jia, H. Wang, A fast finite volume method for conservative space-fractional diffusion equations in convex domains, J. Comput. Phys., 310 (2016), 63-84.
  • [8] J. Jia, H. Wang, Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions, J. Comput. Phys., 293 (2015), 359-369.
  • [9] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
  • [10] S-J Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC, Boca Raton, 2004.
  • [11] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.
  • [12] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), 23-28.
  • [13] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Frac. Calc. Appl. Anal., 4 (2001), 153-192.
  • [14] M. Meerschaert, Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80-90.
  • [15] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solutions and Some of their Applications, Academic Press, San Diego, 1999.
  • [16] F. Xu, Y. Gao, W. Zhang, Construction of analytic solution for time-fractional Boussinesq equation using iterative method, Adv. Math. Phys., 2015, Article ID 506140, 7 pages.
  • [17] Q. Xu, J.S. Hesthaven, Discontinuous Galerkin method for fractional convection-diffusion equations, SIAM J. Numer. Anal., 52 (2014), 405-423.
  • [18] M. Yavuz, N. Özdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal Fractional, 2 (2018), 1.
  • [19] M. Yavuz, N. Özdemir, On the solutions of fractional Cauchy problem featuring conformable derivative, Proceedings of ITM Web of Conferences, EDP Sciences, (2018), 01045.
  • [20] M. Yavuz, B. Yaşkiran, Homotopy methods for fractional linear/nonlinear differential equations with a local derivative operator, Balikesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20 (2018), 75-89.
  • [21] H. Yang, A new high-order method for the time-fractional diffusion equation with a source, J. Frac. Calc. Appl., 11 (2020), 111-129.
  • [22] H. Yang, J. Guo, J.-H. Jung, Schwartz duality of the Dirac delta function for the Chebyshev collocation approximation to the fractional advection equation, Appl. Math. Lett., 64 (2017), 205-212.
  • [23] F. Zeng, C. Li, F. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), A2976-A3000.
  • [24] H. Zhang, X. Jiang, M. Zhao, R. Zheng, Spectral method for solving the time fractional Boussinesq equation, Appl. Math. Lett., 85 (2018), 164-170.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

He Yang 0000-0001-9608-4920

Publication Date March 25, 2020
Submission Date October 18, 2019
Acceptance Date February 10, 2020
Published in Issue Year 2020

Cite

APA Yang, H. (2020). Homotopy Analysis Method for the Time-Fractional Boussinesq Equation. Universal Journal of Mathematics and Applications, 3(1), 12-18. https://doi.org/10.32323/ujma.634491
AMA Yang H. Homotopy Analysis Method for the Time-Fractional Boussinesq Equation. Univ. J. Math. Appl. March 2020;3(1):12-18. doi:10.32323/ujma.634491
Chicago Yang, He. “Homotopy Analysis Method for the Time-Fractional Boussinesq Equation”. Universal Journal of Mathematics and Applications 3, no. 1 (March 2020): 12-18. https://doi.org/10.32323/ujma.634491.
EndNote Yang H (March 1, 2020) Homotopy Analysis Method for the Time-Fractional Boussinesq Equation. Universal Journal of Mathematics and Applications 3 1 12–18.
IEEE H. Yang, “Homotopy Analysis Method for the Time-Fractional Boussinesq Equation”, Univ. J. Math. Appl., vol. 3, no. 1, pp. 12–18, 2020, doi: 10.32323/ujma.634491.
ISNAD Yang, He. “Homotopy Analysis Method for the Time-Fractional Boussinesq Equation”. Universal Journal of Mathematics and Applications 3/1 (March 2020), 12-18. https://doi.org/10.32323/ujma.634491.
JAMA Yang H. Homotopy Analysis Method for the Time-Fractional Boussinesq Equation. Univ. J. Math. Appl. 2020;3:12–18.
MLA Yang, He. “Homotopy Analysis Method for the Time-Fractional Boussinesq Equation”. Universal Journal of Mathematics and Applications, vol. 3, no. 1, 2020, pp. 12-18, doi:10.32323/ujma.634491.
Vancouver Yang H. Homotopy Analysis Method for the Time-Fractional Boussinesq Equation. Univ. J. Math. Appl. 2020;3(1):12-8.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.