Research Article
BibTex RIS Cite
Year 2020, , 109 - 114, 29.09.2020
https://doi.org/10.32323/ujma.652513

Abstract

References

  • [1] M. Alomari, M. Darus and S.S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. Math, 41 (4), 2010, 353–359.
  • [2] P. Cerone, S.S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math., 32 (4) (1999), 697–712.
  • [3] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  • [4] D.Y. Hwang, Some Inequalities for n-time Differentiable Mappings and Applications, Kyung. Math. Jour., 43 (2003), 335–343.
  • [5] İ. İşcan, S. Turhan, S. Maden, Some Hermite-Hadamard-Fejer type inequalities for Harmonically convex functions via Fractional Integral, New Trends Math. Sci., 4 (2) (2016), 1-10.
  • [6] İ. İşcan, M. Kunt, Hermite-Hadamard-Fejer type inequalities for quasi-geometrically convex functions via fractional integrals, J. Math., Volume 2016, Article ID 6523041, 7 pages.
  • [7] İ. İşcan, New refinements for integral and sum forms of H¨older inequality, J. Inequal. Appl., (2019) 2019:304, 11 pages.
  • [8] W.D. Jiang, D.W. Niu, , Y. Hua and F. Qi, Generalizations of Hermite-Hadamard inequality to n-time differentiable function which are s-convex in the second sense, Analysis (Munich), 32 (2012), 209–220.
  • [9] H. Kadakal, Hermite-Hadamard type inequalities for trigonometrically convex functions, Sci. Stud. Res. Ser. Math. Info., 28(2), (2018), 19-28.
  • [10] S. Maden, H. Kadakal, M. Kadakal and İ. İşcan, Some new integral inequalities for n-times differentiable convex and concave functions. J. Non. Sci. Appl., 10 12,(2017), 6141-6148.
  • [11] S. Özcan, Some Integral Inequalities for Harmonically (a; s)-Convex Functions, J. Funct. Spaces, 2019, Article ID 2394021, 8 pages (2019).
  • [12] S. Özcan, and İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., Article number: 2019:201 (2019).
  • [13] J.E. Pecaric, F. Porschan and Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc., 1992.
  • [14] S.H. Wang, B.Y. Xi and F. Qi, Some new inequalities of Hermite-Hadamard type for n-time differentiable functions which are m-convex, Analysis (Munich), 32 (2012), 247–262.
  • [15] B.Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl., 2012, http://dx.doi.org/10.1155/2012/980438.

Some New Integral Inequalities for $n$-Times Differentiable Trigonometrically Convex Functions

Year 2020, , 109 - 114, 29.09.2020
https://doi.org/10.32323/ujma.652513

Abstract

In this manuscript, by using an integral identity together with both the Hölder, Hölder-İşcan and the Power-mean integral inequalities we obtain several new inequalities for $n$-time differentiable trigonometrically convex functions.                                                                                                                                                                                                                                                                                                                                                                                                                 

References

  • [1] M. Alomari, M. Darus and S.S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. Math, 41 (4), 2010, 353–359.
  • [2] P. Cerone, S.S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math., 32 (4) (1999), 697–712.
  • [3] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  • [4] D.Y. Hwang, Some Inequalities for n-time Differentiable Mappings and Applications, Kyung. Math. Jour., 43 (2003), 335–343.
  • [5] İ. İşcan, S. Turhan, S. Maden, Some Hermite-Hadamard-Fejer type inequalities for Harmonically convex functions via Fractional Integral, New Trends Math. Sci., 4 (2) (2016), 1-10.
  • [6] İ. İşcan, M. Kunt, Hermite-Hadamard-Fejer type inequalities for quasi-geometrically convex functions via fractional integrals, J. Math., Volume 2016, Article ID 6523041, 7 pages.
  • [7] İ. İşcan, New refinements for integral and sum forms of H¨older inequality, J. Inequal. Appl., (2019) 2019:304, 11 pages.
  • [8] W.D. Jiang, D.W. Niu, , Y. Hua and F. Qi, Generalizations of Hermite-Hadamard inequality to n-time differentiable function which are s-convex in the second sense, Analysis (Munich), 32 (2012), 209–220.
  • [9] H. Kadakal, Hermite-Hadamard type inequalities for trigonometrically convex functions, Sci. Stud. Res. Ser. Math. Info., 28(2), (2018), 19-28.
  • [10] S. Maden, H. Kadakal, M. Kadakal and İ. İşcan, Some new integral inequalities for n-times differentiable convex and concave functions. J. Non. Sci. Appl., 10 12,(2017), 6141-6148.
  • [11] S. Özcan, Some Integral Inequalities for Harmonically (a; s)-Convex Functions, J. Funct. Spaces, 2019, Article ID 2394021, 8 pages (2019).
  • [12] S. Özcan, and İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., Article number: 2019:201 (2019).
  • [13] J.E. Pecaric, F. Porschan and Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc., 1992.
  • [14] S.H. Wang, B.Y. Xi and F. Qi, Some new inequalities of Hermite-Hadamard type for n-time differentiable functions which are m-convex, Analysis (Munich), 32 (2012), 247–262.
  • [15] B.Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl., 2012, http://dx.doi.org/10.1155/2012/980438.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Kerim Bekar 0000-0002-7531-9345

Publication Date September 29, 2020
Submission Date November 28, 2019
Acceptance Date September 14, 2020
Published in Issue Year 2020

Cite

APA Bekar, K. (2020). Some New Integral Inequalities for $n$-Times Differentiable Trigonometrically Convex Functions. Universal Journal of Mathematics and Applications, 3(3), 109-114. https://doi.org/10.32323/ujma.652513
AMA Bekar K. Some New Integral Inequalities for $n$-Times Differentiable Trigonometrically Convex Functions. Univ. J. Math. Appl. September 2020;3(3):109-114. doi:10.32323/ujma.652513
Chicago Bekar, Kerim. “Some New Integral Inequalities for $n$-Times Differentiable Trigonometrically Convex Functions”. Universal Journal of Mathematics and Applications 3, no. 3 (September 2020): 109-14. https://doi.org/10.32323/ujma.652513.
EndNote Bekar K (September 1, 2020) Some New Integral Inequalities for $n$-Times Differentiable Trigonometrically Convex Functions. Universal Journal of Mathematics and Applications 3 3 109–114.
IEEE K. Bekar, “Some New Integral Inequalities for $n$-Times Differentiable Trigonometrically Convex Functions”, Univ. J. Math. Appl., vol. 3, no. 3, pp. 109–114, 2020, doi: 10.32323/ujma.652513.
ISNAD Bekar, Kerim. “Some New Integral Inequalities for $n$-Times Differentiable Trigonometrically Convex Functions”. Universal Journal of Mathematics and Applications 3/3 (September 2020), 109-114. https://doi.org/10.32323/ujma.652513.
JAMA Bekar K. Some New Integral Inequalities for $n$-Times Differentiable Trigonometrically Convex Functions. Univ. J. Math. Appl. 2020;3:109–114.
MLA Bekar, Kerim. “Some New Integral Inequalities for $n$-Times Differentiable Trigonometrically Convex Functions”. Universal Journal of Mathematics and Applications, vol. 3, no. 3, 2020, pp. 109-14, doi:10.32323/ujma.652513.
Vancouver Bekar K. Some New Integral Inequalities for $n$-Times Differentiable Trigonometrically Convex Functions. Univ. J. Math. Appl. 2020;3(3):109-14.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.