Research Article
BibTex RIS Cite

Different Computational Approach for Sumudu Integral Transform by Using Differential Transform Method

Year 2018, Volume: 1 Issue: 4, 233 - 238, 20.12.2018
https://doi.org/10.32323/ujma.433172

Abstract

In this work, we present a different technique for calculation of Sumudu Integral Transform (SIT) by considering differential transform method (DTM). By means of our technique, Sumudu Transform of functions is obtained easily without complicated integration procedures.

References

  • [1] G. K. Watugala, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Internat. J. Math. Ed. Sci. Tech., 24(1) (1993), 35–43.
  • [2] F. B. M. Belgacem, A. A. Karaballi, S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Math. Probl. Eng., 3 (2003), 103–118.
  • [3] F. B. M. Belgacem, Sumudu transform applications to Bessel functions and equations, Appl. Math. Sci., 4 (2010), 3665–3686.
  • [4] G. K. Watugala, Sumudu transform new integral transform to solve differential equations and control engineering problems, Math. Engrg. Ind., 6(4) (1998), 319–329.
  • [5] A. Kilicman, H. E. Gadain, An Application of Double Laplace transform and double Sumudu transform, Lobachevskii J. Math., 30(3) (2009), 214–223.
  • [6] A. Kilicman, H. E. Gadain, On the applications of Laplace and Sumudu transforms, J. Franklin Inst., 347(5) (2010), 848–862.
  • [7] M. Zahid, M. A. Rana, T. Haroon, A. Siddiqui, Applications of Sumudu transform to MHD flows of an Oldroyd-B fluid, Appl. Math. Sci., 7 (2013), 7027–7036.
  • [8] M. A. Rana, A. Siddiqui, Q. K. Ghori, R. Qamar, Application of He’s Homotopy perturbation method to Sumudu transform, Int. J. Nonlinear Sci. Numer. Simul., 8(2) (2007), 185–190.
  • [9] N. A. A. Rahman, M. Z. Ahmad, Applications of the fuzzy Sumudu transform for the solution of first order Fuzzy differential equations, Entropy, 17(7) (2015), 4582–4601.
  • [10] O. M. Ogunlaran, H. S. Yusuf, Adomain Sumudu transform method for the Blasius equation, British J. Math. Comput. Sci., 14(3) (2016), 1–8.
  • [11] S. Abbasbandy, Applications of He’s homotopy perturbation method for Laplace transform, Chaos Solitons Fractals, 30(5) (2006), 1206–1212.
  • [12] H. Fatoorehchi, H. Abolghasemi, N. Magesh, The differential transform method as a new computational tool for Laplace transforms, Nats. Akad. Sci. Lett., 38(2) (2015), 157–160.
  • [13] E. Babolian, J. Biazar, A. R. Vahidi, A new computational method for Laplace transforms by decomposition method, Appl. Math. Comput., 150(3) (2004), 841–846.
  • [14] C. K. Chen, S. H. Ho, Solving partial differential equations by two-dimensional differential transform method, Appl. Math. Comput., 106(2-3) (1999), 171–179.
  • [15] M. J. Jang, C. Li Chen and Y. C. Liy, On solving the initial-value problems using the differential transformation method, Appl. Math. Comput., 115(2-3) (2000), 145–160.
  • [16] M. Gubes, H. A. Peker, G. Oturanc, Application of Differential transform method for El Nino southern oscillation (ENSO) model with compared Adomian decomposition and variational iteration methods, J. Math. Comput. Sci., 15(3) (2015), 167–178.
  • [17] M. Gubes, G. Oturanc, Approximate solutions of coupled Ramani equation by using RDTM with compared DTM and exact solutions, New Trends Math. Sci., 4 (2016), 198-212.
Year 2018, Volume: 1 Issue: 4, 233 - 238, 20.12.2018
https://doi.org/10.32323/ujma.433172

Abstract

References

  • [1] G. K. Watugala, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Internat. J. Math. Ed. Sci. Tech., 24(1) (1993), 35–43.
  • [2] F. B. M. Belgacem, A. A. Karaballi, S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Math. Probl. Eng., 3 (2003), 103–118.
  • [3] F. B. M. Belgacem, Sumudu transform applications to Bessel functions and equations, Appl. Math. Sci., 4 (2010), 3665–3686.
  • [4] G. K. Watugala, Sumudu transform new integral transform to solve differential equations and control engineering problems, Math. Engrg. Ind., 6(4) (1998), 319–329.
  • [5] A. Kilicman, H. E. Gadain, An Application of Double Laplace transform and double Sumudu transform, Lobachevskii J. Math., 30(3) (2009), 214–223.
  • [6] A. Kilicman, H. E. Gadain, On the applications of Laplace and Sumudu transforms, J. Franklin Inst., 347(5) (2010), 848–862.
  • [7] M. Zahid, M. A. Rana, T. Haroon, A. Siddiqui, Applications of Sumudu transform to MHD flows of an Oldroyd-B fluid, Appl. Math. Sci., 7 (2013), 7027–7036.
  • [8] M. A. Rana, A. Siddiqui, Q. K. Ghori, R. Qamar, Application of He’s Homotopy perturbation method to Sumudu transform, Int. J. Nonlinear Sci. Numer. Simul., 8(2) (2007), 185–190.
  • [9] N. A. A. Rahman, M. Z. Ahmad, Applications of the fuzzy Sumudu transform for the solution of first order Fuzzy differential equations, Entropy, 17(7) (2015), 4582–4601.
  • [10] O. M. Ogunlaran, H. S. Yusuf, Adomain Sumudu transform method for the Blasius equation, British J. Math. Comput. Sci., 14(3) (2016), 1–8.
  • [11] S. Abbasbandy, Applications of He’s homotopy perturbation method for Laplace transform, Chaos Solitons Fractals, 30(5) (2006), 1206–1212.
  • [12] H. Fatoorehchi, H. Abolghasemi, N. Magesh, The differential transform method as a new computational tool for Laplace transforms, Nats. Akad. Sci. Lett., 38(2) (2015), 157–160.
  • [13] E. Babolian, J. Biazar, A. R. Vahidi, A new computational method for Laplace transforms by decomposition method, Appl. Math. Comput., 150(3) (2004), 841–846.
  • [14] C. K. Chen, S. H. Ho, Solving partial differential equations by two-dimensional differential transform method, Appl. Math. Comput., 106(2-3) (1999), 171–179.
  • [15] M. J. Jang, C. Li Chen and Y. C. Liy, On solving the initial-value problems using the differential transformation method, Appl. Math. Comput., 115(2-3) (2000), 145–160.
  • [16] M. Gubes, H. A. Peker, G. Oturanc, Application of Differential transform method for El Nino southern oscillation (ENSO) model with compared Adomian decomposition and variational iteration methods, J. Math. Comput. Sci., 15(3) (2015), 167–178.
  • [17] M. Gubes, G. Oturanc, Approximate solutions of coupled Ramani equation by using RDTM with compared DTM and exact solutions, New Trends Math. Sci., 4 (2016), 198-212.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Murat Gübeş

Publication Date December 20, 2018
Submission Date June 12, 2018
Acceptance Date October 3, 2018
Published in Issue Year 2018 Volume: 1 Issue: 4

Cite

APA Gübeş, M. (2018). Different Computational Approach for Sumudu Integral Transform by Using Differential Transform Method. Universal Journal of Mathematics and Applications, 1(4), 233-238. https://doi.org/10.32323/ujma.433172
AMA Gübeş M. Different Computational Approach for Sumudu Integral Transform by Using Differential Transform Method. Univ. J. Math. Appl. December 2018;1(4):233-238. doi:10.32323/ujma.433172
Chicago Gübeş, Murat. “Different Computational Approach for Sumudu Integral Transform by Using Differential Transform Method”. Universal Journal of Mathematics and Applications 1, no. 4 (December 2018): 233-38. https://doi.org/10.32323/ujma.433172.
EndNote Gübeş M (December 1, 2018) Different Computational Approach for Sumudu Integral Transform by Using Differential Transform Method. Universal Journal of Mathematics and Applications 1 4 233–238.
IEEE M. Gübeş, “Different Computational Approach for Sumudu Integral Transform by Using Differential Transform Method”, Univ. J. Math. Appl., vol. 1, no. 4, pp. 233–238, 2018, doi: 10.32323/ujma.433172.
ISNAD Gübeş, Murat. “Different Computational Approach for Sumudu Integral Transform by Using Differential Transform Method”. Universal Journal of Mathematics and Applications 1/4 (December 2018), 233-238. https://doi.org/10.32323/ujma.433172.
JAMA Gübeş M. Different Computational Approach for Sumudu Integral Transform by Using Differential Transform Method. Univ. J. Math. Appl. 2018;1:233–238.
MLA Gübeş, Murat. “Different Computational Approach for Sumudu Integral Transform by Using Differential Transform Method”. Universal Journal of Mathematics and Applications, vol. 1, no. 4, 2018, pp. 233-8, doi:10.32323/ujma.433172.
Vancouver Gübeş M. Different Computational Approach for Sumudu Integral Transform by Using Differential Transform Method. Univ. J. Math. Appl. 2018;1(4):233-8.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.