Research Article
BibTex RIS Cite

Some Results on Nearly Cosymplectic Manifolds

Year 2019, Volume: 2 Issue: 4, 218 - 223, 26.12.2019
https://doi.org/10.32323/ujma.625939

Abstract

The object of this paper is to study Ricci solitons under some curvature conditions in nearly cosymplectic manifolds.

References

  • [1] Z. Olszak, Nearly Sasakian manifolds, Tensor, N.S., 33(1979), 26.
  • [2] Z. Olszak, Five-dimensional nearly Sasakian manifolds, Tensor, N.S., 34(1980), 273-276.
  • [3] H. Endo, On the curvature tensor of nearly cosymplectic manifolds of constant j-sectional curvature. An. S¸tiint. Univ. Al. I. Cuza Ia¸si. Mat. 51(2)(2005), 439-454 .
  • [4] A. De Nicola, G. Dileo, I. Yudin, On nearly Sasakian and nearly cosymplectic manifolds, Ann. Mat., (2017), https://doi.org/10.1007/s10231-017-0671-2.
  • [5] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math., 203, Birkhauser Boston 2002.
  • [6] D.E. Blair, D.K. Showers, Almost Contact Manifolds with Killing Structures Tensors II., J. Dier. Geom., 9(1974), 577-582.
  • [7] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, (1976).
  • [8] S. K. Chaubey, On generalized j-recurrent trans-Sasakian manifolds, (to appear).
  • [9] P. Libermann, Sur les automorphismes innit·esimaux des structures symplectiques et de atructures de contact, Coll. G·eom. Di. Globale, (1959), 3759.
  • [10] R.S. Hamilton, The Ricci flow on surfaces, Mathematical and General relativity (Santa Cruz, CA, 1986), American Math. Soc. Contemp. Math. 71 (1988), 237-262.
  • [11] H.G. Nagaraja, C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Anal., 3 (2) (2012), 18-24.
  • [12] R. Sharma, Certain results on K-contact and (k;m)-contact manifolds, J. Geom., 89 (2008), 138-147.
  • [13] M.M. Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801, 4222v1, [math DG] (2008).
  • [14] U.C. De, On j-recurrent Kenmotsu manifolds, Turk J. Math., 33 (2009), 17-25.
  • [15] J. P. Jaiswal, R. H. Ojha, On generalized j-recurrent LP-Sasakian manifolds, Kyungpook Math. J., 49(2009), 779-788.
  • [16] A. Basari, C. Murathan, On generalized j-recurrent Kenmotsu manifolds, Fen Derg. 3(1)(2008), 91-97.
  • [17] D. A. Patil, D. G. Prakasha, C. S. Bagewadi, On generalized j-recurrent Sasakian manifolds, Bull. of Math. Anal. and Appl., 1 (3)(2009), 42-48.
  • [18] J. P. Jaiswal, R. H. Ojha, On generalized j-recurrent LP-Sasakian manifolds, Kyungpook Math. J., 49(2009), 779-788.
  • [19] U. C. De, N. Guha, On generalized recurrent manifolds, J. Nat. Acad. Math. India, 9(1991), 85-92.
  • [20] B. Prasad, A pseudo projective curvature tensor on Riemannian manifold, Bull. Cal. Math. Soc., 94 (2002), 163-169.
  • [21] K.Yano, Concircular geometry-I. Concircular transformations, Proc. Japan Acad., 16 (1940), 195-200.
Year 2019, Volume: 2 Issue: 4, 218 - 223, 26.12.2019
https://doi.org/10.32323/ujma.625939

Abstract

References

  • [1] Z. Olszak, Nearly Sasakian manifolds, Tensor, N.S., 33(1979), 26.
  • [2] Z. Olszak, Five-dimensional nearly Sasakian manifolds, Tensor, N.S., 34(1980), 273-276.
  • [3] H. Endo, On the curvature tensor of nearly cosymplectic manifolds of constant j-sectional curvature. An. S¸tiint. Univ. Al. I. Cuza Ia¸si. Mat. 51(2)(2005), 439-454 .
  • [4] A. De Nicola, G. Dileo, I. Yudin, On nearly Sasakian and nearly cosymplectic manifolds, Ann. Mat., (2017), https://doi.org/10.1007/s10231-017-0671-2.
  • [5] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math., 203, Birkhauser Boston 2002.
  • [6] D.E. Blair, D.K. Showers, Almost Contact Manifolds with Killing Structures Tensors II., J. Dier. Geom., 9(1974), 577-582.
  • [7] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, (1976).
  • [8] S. K. Chaubey, On generalized j-recurrent trans-Sasakian manifolds, (to appear).
  • [9] P. Libermann, Sur les automorphismes innit·esimaux des structures symplectiques et de atructures de contact, Coll. G·eom. Di. Globale, (1959), 3759.
  • [10] R.S. Hamilton, The Ricci flow on surfaces, Mathematical and General relativity (Santa Cruz, CA, 1986), American Math. Soc. Contemp. Math. 71 (1988), 237-262.
  • [11] H.G. Nagaraja, C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Anal., 3 (2) (2012), 18-24.
  • [12] R. Sharma, Certain results on K-contact and (k;m)-contact manifolds, J. Geom., 89 (2008), 138-147.
  • [13] M.M. Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801, 4222v1, [math DG] (2008).
  • [14] U.C. De, On j-recurrent Kenmotsu manifolds, Turk J. Math., 33 (2009), 17-25.
  • [15] J. P. Jaiswal, R. H. Ojha, On generalized j-recurrent LP-Sasakian manifolds, Kyungpook Math. J., 49(2009), 779-788.
  • [16] A. Basari, C. Murathan, On generalized j-recurrent Kenmotsu manifolds, Fen Derg. 3(1)(2008), 91-97.
  • [17] D. A. Patil, D. G. Prakasha, C. S. Bagewadi, On generalized j-recurrent Sasakian manifolds, Bull. of Math. Anal. and Appl., 1 (3)(2009), 42-48.
  • [18] J. P. Jaiswal, R. H. Ojha, On generalized j-recurrent LP-Sasakian manifolds, Kyungpook Math. J., 49(2009), 779-788.
  • [19] U. C. De, N. Guha, On generalized recurrent manifolds, J. Nat. Acad. Math. India, 9(1991), 85-92.
  • [20] B. Prasad, A pseudo projective curvature tensor on Riemannian manifold, Bull. Cal. Math. Soc., 94 (2002), 163-169.
  • [21] K.Yano, Concircular geometry-I. Concircular transformations, Proc. Japan Acad., 16 (1940), 195-200.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Adile Dündar This is me 0000-0002-9965-5853

Nesip Aktan 0000-0002-6825-4563

Publication Date December 26, 2019
Submission Date September 27, 2019
Acceptance Date December 20, 2019
Published in Issue Year 2019 Volume: 2 Issue: 4

Cite

APA Dündar, A., & Aktan, N. (2019). Some Results on Nearly Cosymplectic Manifolds. Universal Journal of Mathematics and Applications, 2(4), 218-223. https://doi.org/10.32323/ujma.625939
AMA Dündar A, Aktan N. Some Results on Nearly Cosymplectic Manifolds. Univ. J. Math. Appl. December 2019;2(4):218-223. doi:10.32323/ujma.625939
Chicago Dündar, Adile, and Nesip Aktan. “Some Results on Nearly Cosymplectic Manifolds”. Universal Journal of Mathematics and Applications 2, no. 4 (December 2019): 218-23. https://doi.org/10.32323/ujma.625939.
EndNote Dündar A, Aktan N (December 1, 2019) Some Results on Nearly Cosymplectic Manifolds. Universal Journal of Mathematics and Applications 2 4 218–223.
IEEE A. Dündar and N. Aktan, “Some Results on Nearly Cosymplectic Manifolds”, Univ. J. Math. Appl., vol. 2, no. 4, pp. 218–223, 2019, doi: 10.32323/ujma.625939.
ISNAD Dündar, Adile - Aktan, Nesip. “Some Results on Nearly Cosymplectic Manifolds”. Universal Journal of Mathematics and Applications 2/4 (December 2019), 218-223. https://doi.org/10.32323/ujma.625939.
JAMA Dündar A, Aktan N. Some Results on Nearly Cosymplectic Manifolds. Univ. J. Math. Appl. 2019;2:218–223.
MLA Dündar, Adile and Nesip Aktan. “Some Results on Nearly Cosymplectic Manifolds”. Universal Journal of Mathematics and Applications, vol. 2, no. 4, 2019, pp. 218-23, doi:10.32323/ujma.625939.
Vancouver Dündar A, Aktan N. Some Results on Nearly Cosymplectic Manifolds. Univ. J. Math. Appl. 2019;2(4):218-23.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.