Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 1, 9 - 25, 22.03.2021

Abstract

References

  • [1] R.T. Gregory, D.L. Karney, A Collection of Matrices for Testing Computational Algorithms, Wiley-Interscience, New York, London Sydney Toronto, 1969.
  • [2] R.A. Horn, Ch.R. Johnson, Matrix Analysis, University Press, Cambridge, 22nd printing, 2009.
  • [3] R.A. Horn, Ch.R. Johnson, Topics in Matrix Analysis, University Press, Cambridge, 10th printing, 2008.
  • [4] T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.
  • [5] L. Kohaupt, Construction of a biorthogonal system of principal vectors of the matrices $A$ and $A^{\ast}$ with applications to the initial value problem $\dot{x}=A\,x, \; x(t_0)=x_0$, J. Comput. Math. Optim., 3(3) (2007),163-192.
  • [6] L. Kohaupt, Biorthogonalization of the principal vectors for the matrices $A$ and $A^{\ast}$ with application to the computation of the explicit representation of the solution $x(t)$ of $\dot{x}=A\,x, \; x(t_0)=x_0$, Appl. Math. Sci., 2(20) (2008), 961-974.
  • [7] L. Kohaupt, Solution of the vibration problem $M\ddot{y}+B\dot{y}+K y = 0, \, y(t_0)=y_0, \, \dot{y}(t_0)=\dot{y}_0$ {\em without} the hypothesis $B M^{-1} K = K M^{-1} B$ or $B = \alpha M + \beta K$, Appl. Math. Sci., 2(41) (2008)1989-2024.
  • [8] L. Kohaupt, Generalized Rayleigh-quotient representation of the eigenvalues of self-adjoint matrices, J. Algebra Appl. Math., 14(1) (2016)1-26.
  • [9] L. Kohaupt, Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices, J. Math. Sci. Model., 2(2) (2019), 82-98.
  • [10] L. Kohaupt, Generalized Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices, J. Adv. Math., 14(2) (2018), 7702-7728.
  • [11] L. Kohaupt, Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of general matrices, J. Math. Sci. Model., 3(2) (2020), 55-75.
  • [12] F. Stummel, K. Hainer, Introduction to Numerical Analysis, Scottish Academic Press, Edinburgh, 1980.
  • [13] L.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
  • [14] R. Zurmühl, S. Falk, Matrizen und ihre Anwendungen, Teil 1: Grundlagen (Matrices and Their Applications, Part 1: Foundations), Springer-Verlag, Berlin Heidelberg New York Tokyo, 1984.

Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices

Year 2021, Volume: 4 Issue: 1, 9 - 25, 22.03.2021

Abstract

In the present paper, generalized Rayleigh-quotient formulas for the real parts, imaginary parts, and moduli of the eigenvalues of general (not necessarily diagonalizable) matrices are derived by using quotients of the form $(Au,v)/(u,v)$ instead of $(Au,u)/(u,u)$. These formulas are new and correspond to similar formulas for diagonalizable matrices obtained recently. Numerical examples underpin the theoretical findings. We point out that, in the case of general matrices, the principal vectors of largest stage of matrix $A^{\ast}$ take over the role of the eigenvectors in the case of diagonalizable matrices. So, even though the formulas in both cases look very similar, the result is somehow unexpected and surprising.

References

  • [1] R.T. Gregory, D.L. Karney, A Collection of Matrices for Testing Computational Algorithms, Wiley-Interscience, New York, London Sydney Toronto, 1969.
  • [2] R.A. Horn, Ch.R. Johnson, Matrix Analysis, University Press, Cambridge, 22nd printing, 2009.
  • [3] R.A. Horn, Ch.R. Johnson, Topics in Matrix Analysis, University Press, Cambridge, 10th printing, 2008.
  • [4] T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.
  • [5] L. Kohaupt, Construction of a biorthogonal system of principal vectors of the matrices $A$ and $A^{\ast}$ with applications to the initial value problem $\dot{x}=A\,x, \; x(t_0)=x_0$, J. Comput. Math. Optim., 3(3) (2007),163-192.
  • [6] L. Kohaupt, Biorthogonalization of the principal vectors for the matrices $A$ and $A^{\ast}$ with application to the computation of the explicit representation of the solution $x(t)$ of $\dot{x}=A\,x, \; x(t_0)=x_0$, Appl. Math. Sci., 2(20) (2008), 961-974.
  • [7] L. Kohaupt, Solution of the vibration problem $M\ddot{y}+B\dot{y}+K y = 0, \, y(t_0)=y_0, \, \dot{y}(t_0)=\dot{y}_0$ {\em without} the hypothesis $B M^{-1} K = K M^{-1} B$ or $B = \alpha M + \beta K$, Appl. Math. Sci., 2(41) (2008)1989-2024.
  • [8] L. Kohaupt, Generalized Rayleigh-quotient representation of the eigenvalues of self-adjoint matrices, J. Algebra Appl. Math., 14(1) (2016)1-26.
  • [9] L. Kohaupt, Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices, J. Math. Sci. Model., 2(2) (2019), 82-98.
  • [10] L. Kohaupt, Generalized Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices, J. Adv. Math., 14(2) (2018), 7702-7728.
  • [11] L. Kohaupt, Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of general matrices, J. Math. Sci. Model., 3(2) (2020), 55-75.
  • [12] F. Stummel, K. Hainer, Introduction to Numerical Analysis, Scottish Academic Press, Edinburgh, 1980.
  • [13] L.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
  • [14] R. Zurmühl, S. Falk, Matrizen und ihre Anwendungen, Teil 1: Grundlagen (Matrices and Their Applications, Part 1: Foundations), Springer-Verlag, Berlin Heidelberg New York Tokyo, 1984.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ludwig Kohaupt

Publication Date March 22, 2021
Submission Date June 12, 2020
Acceptance Date January 13, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Kohaupt, L. (2021). Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Universal Journal of Mathematics and Applications, 4(1), 9-25.
AMA Kohaupt L. Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Univ. J. Math. Appl. March 2021;4(1):9-25.
Chicago Kohaupt, Ludwig. “Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”. Universal Journal of Mathematics and Applications 4, no. 1 (March 2021): 9-25.
EndNote Kohaupt L (March 1, 2021) Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Universal Journal of Mathematics and Applications 4 1 9–25.
IEEE L. Kohaupt, “Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”, Univ. J. Math. Appl., vol. 4, no. 1, pp. 9–25, 2021.
ISNAD Kohaupt, Ludwig. “Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”. Universal Journal of Mathematics and Applications 4/1 (March 2021), 9-25.
JAMA Kohaupt L. Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Univ. J. Math. Appl. 2021;4:9–25.
MLA Kohaupt, Ludwig. “Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”. Universal Journal of Mathematics and Applications, vol. 4, no. 1, 2021, pp. 9-25.
Vancouver Kohaupt L. Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Univ. J. Math. Appl. 2021;4(1):9-25.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.