Research Article
BibTex RIS Cite

Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence

Year 2023, Volume: 6 Issue: 1, 15 - 22, 28.03.2023
https://doi.org/10.32323/ujma.1207010

Abstract

This article is a continuation of our previous works. We mainly investigate a Korovkin type theorem for double sequences of positive linear operators defined in the space of all $2\pi $-periodic and real valued continuous functions on the real two-dimensional space with help of the concept of triangular $A$-statistical convergence, which is a kind of statistical convergence for double real sequences. Also, we analyze the rate of convergence of double operators in this via modulus of continuity.

References

  • [1] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  • [2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymtotique, Colloq. Math. 2 (1951), 73-74.
  • [3] C. Bardaro, A. Boccuto, K. Demirci, I. Mantellini, S. Orhan, Triangular A-statistical approximation by double sequences of positive linear operators, Results in Mathematics, 68 (2015), 271-291.
  • [4] C. Bardaro, A. Boccuto, K. Demirci, I. Mantellini, S. Orhan, Korovkin-Type Theorems for Modular Y-A-Statistical Convergence, Journal of Function Spaces, 2015 (2015), 1-11.
  • [5] K. Demirci, F. Dirik, P. Okc¸u, Approximation in Triangular Statistical Sense to B-Continuous Functions by Positive Linear Operators, Annals of the Alexandru Ioan Cuza University-Mathematics, 63(3) (2017).
  • [6] S. C¸ ınar, Triangular A-statistical relative uniform convergence for double sequences of positive linear operator, Facta Universitatis. Series: Mathematics and Informatics, (2021) 065-077.
  • [7] S. C¸ ınar, S. Yıldız, K. Demirci, Korovkin type approximation via triangular A-statistical convergence on an infinite interval, Turkish Journal of Mathematics 45(2) (2021), 929-942.
  • [8] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
  • [9] C. Bardaro, I. Mantellini, Korovkin’s theorem in modular spaces, Commentationes Math. 47 (2007), 239-253.
  • [10] K. Demirci, A. Boccuto, S. Yıldız, F. Dirik, Relative uniform convergence of a sequence of functions at a point and Korovkin-type approximation theorems, Positivity, 24(1) (2020), 1-11.
  • [11] K. Demirci, S. Orhan, Statistically relatively uniform convergence of positive linear operators, Results Math., 69 (2016), 359-367.
  • [12] K. Demirci, S. Orhan, B. Kolay, Relative Hemen Hemen Yakınsaklık ve Yaklas¸ım Teoremleri, Sinop U¨ niversitesi Fen Bilimleri Dergisi, 1(2) (2016), 114-122.
  • [13] K. Demirci, S. Yıldız, F. Dirik, Approximation via power series method in two-dimensional weighted spaces, Bulletin of the Malaysian Mathematical Sciences Society, 43(6) (2020), 3871-3883.
  • [14] K. Demirci, F. Dirik, Approximation for periodic functions via statistical s-convergence, Mathematical Communications, 16(1) (2011), 77-84.
  • [15] K. Demirci, F. Dirik, S. Yıldız, Approximation via equi-statistical convergence in the sense of power series method, Revista de la Real Academia de Ciencias Exactas, 116(2) (2022), 1-13.
  • [16] O. Duman, Statistical approximation for periodic functions, Demons. Math., 36(4) (2003), 873-878. [17] O. Duman, E. Erkus¸, Approximation of continuous periodic functions via statistical convergence, Comput. Math. Appl., 52 (2006) 967-974.
  • [18] O. Duman, M. K. Khan, C. Orhan, A-statistical convergence of approximating operators, Math. Inequal. Appl., 6 (2003) 689-699.
  • [19] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138.
  • [20] M. U¨ nver, C. Orhan, Statistical convergence with respect to power series methods and applications to approximation theory, Numerical Functional Analysis and Optimization, 40(5) (2019), 535-547.
  • [21] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53 (1900), 289-321.
  • [22] H.J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2 (1936), 29-60.
  • [23] G.M. Robison, Divergent double sequences and series, Amer. Math. Soc. Transl., 28 (1926), 50-73.
  • [24] F. Moricz, Statistical convergence of multiple sequences, Arch. Math. (Basel), 81 (2004), 82-89.
  • [25] G.H. Hardy, Divergent Series, Oxford Univ. Press, London, 1949.
  • [26] K. Demirci, F. Dirik, Four-dimensional matrix transformation and rate of A-statistical convergence of periodic functions, Math. Comput. Modelling, 52 (2010), 1858-1866.
Year 2023, Volume: 6 Issue: 1, 15 - 22, 28.03.2023
https://doi.org/10.32323/ujma.1207010

Abstract

References

  • [1] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  • [2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymtotique, Colloq. Math. 2 (1951), 73-74.
  • [3] C. Bardaro, A. Boccuto, K. Demirci, I. Mantellini, S. Orhan, Triangular A-statistical approximation by double sequences of positive linear operators, Results in Mathematics, 68 (2015), 271-291.
  • [4] C. Bardaro, A. Boccuto, K. Demirci, I. Mantellini, S. Orhan, Korovkin-Type Theorems for Modular Y-A-Statistical Convergence, Journal of Function Spaces, 2015 (2015), 1-11.
  • [5] K. Demirci, F. Dirik, P. Okc¸u, Approximation in Triangular Statistical Sense to B-Continuous Functions by Positive Linear Operators, Annals of the Alexandru Ioan Cuza University-Mathematics, 63(3) (2017).
  • [6] S. C¸ ınar, Triangular A-statistical relative uniform convergence for double sequences of positive linear operator, Facta Universitatis. Series: Mathematics and Informatics, (2021) 065-077.
  • [7] S. C¸ ınar, S. Yıldız, K. Demirci, Korovkin type approximation via triangular A-statistical convergence on an infinite interval, Turkish Journal of Mathematics 45(2) (2021), 929-942.
  • [8] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
  • [9] C. Bardaro, I. Mantellini, Korovkin’s theorem in modular spaces, Commentationes Math. 47 (2007), 239-253.
  • [10] K. Demirci, A. Boccuto, S. Yıldız, F. Dirik, Relative uniform convergence of a sequence of functions at a point and Korovkin-type approximation theorems, Positivity, 24(1) (2020), 1-11.
  • [11] K. Demirci, S. Orhan, Statistically relatively uniform convergence of positive linear operators, Results Math., 69 (2016), 359-367.
  • [12] K. Demirci, S. Orhan, B. Kolay, Relative Hemen Hemen Yakınsaklık ve Yaklas¸ım Teoremleri, Sinop U¨ niversitesi Fen Bilimleri Dergisi, 1(2) (2016), 114-122.
  • [13] K. Demirci, S. Yıldız, F. Dirik, Approximation via power series method in two-dimensional weighted spaces, Bulletin of the Malaysian Mathematical Sciences Society, 43(6) (2020), 3871-3883.
  • [14] K. Demirci, F. Dirik, Approximation for periodic functions via statistical s-convergence, Mathematical Communications, 16(1) (2011), 77-84.
  • [15] K. Demirci, F. Dirik, S. Yıldız, Approximation via equi-statistical convergence in the sense of power series method, Revista de la Real Academia de Ciencias Exactas, 116(2) (2022), 1-13.
  • [16] O. Duman, Statistical approximation for periodic functions, Demons. Math., 36(4) (2003), 873-878. [17] O. Duman, E. Erkus¸, Approximation of continuous periodic functions via statistical convergence, Comput. Math. Appl., 52 (2006) 967-974.
  • [18] O. Duman, M. K. Khan, C. Orhan, A-statistical convergence of approximating operators, Math. Inequal. Appl., 6 (2003) 689-699.
  • [19] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138.
  • [20] M. U¨ nver, C. Orhan, Statistical convergence with respect to power series methods and applications to approximation theory, Numerical Functional Analysis and Optimization, 40(5) (2019), 535-547.
  • [21] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53 (1900), 289-321.
  • [22] H.J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2 (1936), 29-60.
  • [23] G.M. Robison, Divergent double sequences and series, Amer. Math. Soc. Transl., 28 (1926), 50-73.
  • [24] F. Moricz, Statistical convergence of multiple sequences, Arch. Math. (Basel), 81 (2004), 82-89.
  • [25] G.H. Hardy, Divergent Series, Oxford Univ. Press, London, 1949.
  • [26] K. Demirci, F. Dirik, Four-dimensional matrix transformation and rate of A-statistical convergence of periodic functions, Math. Comput. Modelling, 52 (2010), 1858-1866.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Selin Çınar 0000-0002-6244-6214

Publication Date March 28, 2023
Submission Date November 18, 2022
Acceptance Date January 23, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Çınar, S. (2023). Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence. Universal Journal of Mathematics and Applications, 6(1), 15-22. https://doi.org/10.32323/ujma.1207010
AMA Çınar S. Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence. Univ. J. Math. Appl. March 2023;6(1):15-22. doi:10.32323/ujma.1207010
Chicago Çınar, Selin. “Theorems of Second Korovkin Type With Respect to Triangular $A$-Statistical Convergence”. Universal Journal of Mathematics and Applications 6, no. 1 (March 2023): 15-22. https://doi.org/10.32323/ujma.1207010.
EndNote Çınar S (March 1, 2023) Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence. Universal Journal of Mathematics and Applications 6 1 15–22.
IEEE S. Çınar, “Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence”, Univ. J. Math. Appl., vol. 6, no. 1, pp. 15–22, 2023, doi: 10.32323/ujma.1207010.
ISNAD Çınar, Selin. “Theorems of Second Korovkin Type With Respect to Triangular $A$-Statistical Convergence”. Universal Journal of Mathematics and Applications 6/1 (March 2023), 15-22. https://doi.org/10.32323/ujma.1207010.
JAMA Çınar S. Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence. Univ. J. Math. Appl. 2023;6:15–22.
MLA Çınar, Selin. “Theorems of Second Korovkin Type With Respect to Triangular $A$-Statistical Convergence”. Universal Journal of Mathematics and Applications, vol. 6, no. 1, 2023, pp. 15-22, doi:10.32323/ujma.1207010.
Vancouver Çınar S. Theorems of Second Korovkin Type with respect to Triangular $A$-Statistical Convergence. Univ. J. Math. Appl. 2023;6(1):15-22.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.