Year 2023,
Volume: 6 Issue: 4, 155 - 161, 18.12.2023
Erdinç Dündar
,
Nimet Pancaroğlu Akın
,
Esra Gülle
References
- [1] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
- [2] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
- [3] P. Kostyrko, T. Salat, W. Wilczynski, $\mathcal{I}$ -Convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
- [4] A. Nabiev, S. Pehlivan, M. Gürdal, On $\mathcal{I}$ -Cauchy sequence, Taiwanese J. Math., 11(2) (2007), 569–576.
- [5] U. Yamancı, M. Gürdal, On lacunary ideal convergence in random n-normed space, J. Math., 2013 (2013), Article ID 868457, 8 pages.
- [6] B. C. Tripathy, B. Hazarika, B. Choudhary, Lacunary $\mathcal{I}$ -convergent sequences, Kyungpook Math. J., 52 (2012), 473–482.
- [7] N. P. Akın, E. Dündar, S¸ . Yalvaç, Lacunary $\mathcal{I}^{\ast }$ -convergence and lacunary $\mathcal{I}^{\ast }$ -Cauchy sequence, AKU J. Sci. Eng., (in press).
- [8] N. P. Akın, E. Dündar, Strongly lacunary $\mathcal{I}^{\ast }$ -convergence and strongly lacunary $\mathcal{I}^{\ast }$ -Cauchy sequence, Math. Sci. Appl. E-Notes, (in press).
- [9] P. Das, P. Kostyrko, W. Wilczynski, P. Malik, $\mathcal{I}$ and $\mathcal{I}^*$ -convergence of double sequences, Math. Slovaca, 58(5) (2008), 605-620.
- [10] E. Dündar, B. Altay, $\mathcal{I}_2$ -convergence and $\mathcal{I}_2$ -Cauchy of double sequences, Acta Math. Sci., 34B(2) (2014), 343–353.
- [11] E. Dündar, B. Altay, On some properties of $\mathcal{I}_2$ -convergence and $\mathcal{I}_2$ -Cauchy of double sequences, Gen. Math. Notes, 7(1) (2011) 1–12.
- [12] B. Hazarika, Lacunary ideal convergence of multiple sequences, J. Egyptian Math. Soc., 24 (2016), 54–59.
- [13] E. Dündar, U. Ulusu, N. Pancaroğlu, Strongly $\mathcal{I}_2$ -lacunary convergence and $\mathcal{I}_2$ -lacunary Cauchy double sequences of sets, Aligarh Bull. Math., 35(1-2) (2016), 1–15.
- [14] N. P. Akın, E. Dündar, On lacunary $\mathcal{I}_2^{\ast }$ -convergence and lacunary $\mathcal{I}_2^{\ast }$ -Cauchy sequence, Commun. Adv. Math. Sci., 6(4) (2023), 188–195.
- [15] P. Das, E. Savaş, S. Kr. Ghosal, On generalized of certain summability methods using ideals, Appl. Math. Letter, 36 (2011), 1509–1514.
- [16] P. Debnath, Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl., 63 (2012), 708–715.
- [17] E. Dündar, U. Ulusu, On rough $\mathcal{I}$ -convergence and $\mathcal{I}$ -Cauchy sequence for functions defined on amenable semigroup, Univer. J. Math. Appl., 6(2) (2023), 86–90.
- [18] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesaro type summability spaces, Proc. Lond. Math. Soc., 37 (1978), 508–520.
- [19] F. Nuray, E. Dündar, U. Ulusu, Wijsman $\mathcal{I}_2$ -convergence of double sequences of closed sets, Pure Appl. Math. Lett., 2 (2014), 35–39.
- [20] Y. Sever, U. Ulusu, E. Dündar, On strongly $\mathcal{I}$ and $\mathcal{I}*$ -lacunary convergence of sequences of sets, AIP Conf. Proc., 1611 (2014), 357–362.
- [21] U. Ulusu, F. Nuray, On strongly lacunary summability of sequences of sets, J. Appl. Math. Bioinform. 3(3) (2013), 75–88.
On Strongly Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Strongly Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence
Year 2023,
Volume: 6 Issue: 4, 155 - 161, 18.12.2023
Erdinç Dündar
,
Nimet Pancaroğlu Akın
,
Esra Gülle
Abstract
In the study conducted here, we have given some new concepts in summability theory. In this sense, firstly, using the lacunary sequence we have given the concept of strongly $\mathcal{I}_{\theta_2}^{\ast}$-convergence and we have examined the relations between $\mathcal{I}_{\theta_2}^{\ast}$-convergence and strongly $\mathcal{I}_{\theta_2}^{\ast}$-convergence and also between strongly $\mathcal{I}_{\theta_2}$-convergence and strongly $\mathcal{I}_{\theta_2}^{\ast}$-convergence. Also, using the lacunary sequence we have given the concept of strongly $\mathcal{I}_{\theta_2}^{\ast}$-Cauchy sequence and examined the relations between strongly $\mathcal{I}_{\theta_2}$-Cauchy sequence and strongly $\mathcal{I}_{\theta_2}^{\ast}$-Cauchy sequence.
References
- [1] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
- [2] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
- [3] P. Kostyrko, T. Salat, W. Wilczynski, $\mathcal{I}$ -Convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
- [4] A. Nabiev, S. Pehlivan, M. Gürdal, On $\mathcal{I}$ -Cauchy sequence, Taiwanese J. Math., 11(2) (2007), 569–576.
- [5] U. Yamancı, M. Gürdal, On lacunary ideal convergence in random n-normed space, J. Math., 2013 (2013), Article ID 868457, 8 pages.
- [6] B. C. Tripathy, B. Hazarika, B. Choudhary, Lacunary $\mathcal{I}$ -convergent sequences, Kyungpook Math. J., 52 (2012), 473–482.
- [7] N. P. Akın, E. Dündar, S¸ . Yalvaç, Lacunary $\mathcal{I}^{\ast }$ -convergence and lacunary $\mathcal{I}^{\ast }$ -Cauchy sequence, AKU J. Sci. Eng., (in press).
- [8] N. P. Akın, E. Dündar, Strongly lacunary $\mathcal{I}^{\ast }$ -convergence and strongly lacunary $\mathcal{I}^{\ast }$ -Cauchy sequence, Math. Sci. Appl. E-Notes, (in press).
- [9] P. Das, P. Kostyrko, W. Wilczynski, P. Malik, $\mathcal{I}$ and $\mathcal{I}^*$ -convergence of double sequences, Math. Slovaca, 58(5) (2008), 605-620.
- [10] E. Dündar, B. Altay, $\mathcal{I}_2$ -convergence and $\mathcal{I}_2$ -Cauchy of double sequences, Acta Math. Sci., 34B(2) (2014), 343–353.
- [11] E. Dündar, B. Altay, On some properties of $\mathcal{I}_2$ -convergence and $\mathcal{I}_2$ -Cauchy of double sequences, Gen. Math. Notes, 7(1) (2011) 1–12.
- [12] B. Hazarika, Lacunary ideal convergence of multiple sequences, J. Egyptian Math. Soc., 24 (2016), 54–59.
- [13] E. Dündar, U. Ulusu, N. Pancaroğlu, Strongly $\mathcal{I}_2$ -lacunary convergence and $\mathcal{I}_2$ -lacunary Cauchy double sequences of sets, Aligarh Bull. Math., 35(1-2) (2016), 1–15.
- [14] N. P. Akın, E. Dündar, On lacunary $\mathcal{I}_2^{\ast }$ -convergence and lacunary $\mathcal{I}_2^{\ast }$ -Cauchy sequence, Commun. Adv. Math. Sci., 6(4) (2023), 188–195.
- [15] P. Das, E. Savaş, S. Kr. Ghosal, On generalized of certain summability methods using ideals, Appl. Math. Letter, 36 (2011), 1509–1514.
- [16] P. Debnath, Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl., 63 (2012), 708–715.
- [17] E. Dündar, U. Ulusu, On rough $\mathcal{I}$ -convergence and $\mathcal{I}$ -Cauchy sequence for functions defined on amenable semigroup, Univer. J. Math. Appl., 6(2) (2023), 86–90.
- [18] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesaro type summability spaces, Proc. Lond. Math. Soc., 37 (1978), 508–520.
- [19] F. Nuray, E. Dündar, U. Ulusu, Wijsman $\mathcal{I}_2$ -convergence of double sequences of closed sets, Pure Appl. Math. Lett., 2 (2014), 35–39.
- [20] Y. Sever, U. Ulusu, E. Dündar, On strongly $\mathcal{I}$ and $\mathcal{I}*$ -lacunary convergence of sequences of sets, AIP Conf. Proc., 1611 (2014), 357–362.
- [21] U. Ulusu, F. Nuray, On strongly lacunary summability of sequences of sets, J. Appl. Math. Bioinform. 3(3) (2013), 75–88.