Research Article
BibTex RIS Cite

A Study on the k-Mersenne and k-Mersenne-Lucas Sequences

Year 2025, Volume: 8 Issue: 1, 1 - 7
https://doi.org/10.32323/ujma.1566270

Abstract

In this study, we examine an application of $k-$Mersenne and $k-$Mersenne-Lucas sequences. We present the Catalan transforms of these sequences and give the properties of these Catalan transforms. Catalan transforms of $k-$Mersenne and $k-$Mersenne-Lucas sequences have terms according to different values of $k$, and some of them are associated with the sequences in OEIS. We obtain the generating functions of the Catalan transforms of $k-$Mersenne and $k-$Mersenne-Lucas sequences. Moreover, we apply the Hankel transform to the Catalan transforms of these sequences. Finally, the determinants of the created matrices are calculated by applying the Hankel transform to the terms of the Catalan transforms of these sequences.

References

  • [1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2019.
  • [2] S. Falcon, A. Plaza, On the Fibonacci k-Numbers, Chaos Solutions Fractals, 32(5) (2007), 1615-1624.
  • [3] S. Falcon, Catalan transform of the k-Fibonacci sequence, Communications of the Korean Mathematical Society, 28(4) (2013), 827–832.
  • [4] Y. Soykan, On generalized p-Mersenne numbers, Earthline Journal of Mathematical Sciences, 8(1) (2022), 83-120.
  • [5] R. Frontczak, T. P. Goy, Mersenne-Horadam identities using generating functions, Carpathian Math. Publ., 12(1) (2020), 34-45.
  • [6] M. Uysal, M. Kumari, B. Kuloğlu, K. Prasad, E. Özkan, On the hyperbolic k-Mersenne and k-Mersenne-Lucas octonions, Kragujevac J. Math.,49(5) (2025), 765-779.
  • [7] D. Tasci, On Gaussian Mersenne numbers, J. Sci. Arts, 21(4) (2021), 1021-1028.
  • [8] P. Barry, A Catalan transform and related transformations on integer sequences, J. Integer Seq. J., 8(4) (2005), 1-24.
  • [9] M. Chelgham, A. Boussayoud, On the k-Mersenne-Lucas numbers, Notes Number Theory Discrete Math., 27(1) (2021), 7-13.
  • [10] M. Kumari, K, Prasad, J, Tanti, On the generalization of Mersenne and Gaussian Mersenne polynomials, J. Anal., 32(3) (2024), 931-947.
  • [11] Y. Soykan, A study on generalized Mersenne numbers, Journal of Progressive Research in Mathematics, 18(3) (2021), 90-112.
  • [12] S. Demiriz, S. Erdem, Mersenne matrix operator and its application in p-summable sequence space, Commun. Adv. Math. Sci., 7(1)(2024), 42-55.
  • [13] E. Özkan, M. Uysal, Mersenne-Lucas hybrid numbers, Math. Montisnigri, 52(2021), 17-29.
  • [14] M. Kumari, K. Prasad, R. Mohanta, Algebra of quaternions and octonions involving higher order Mersenne numbers, Proc. Indian Nat. Sci. Acad., (2024), 1-10.
  • [15] M. Kumari, J. Tanti, K. Prasad, On some new families of k-Mersenne and generalized k-Gaussian Mersenne numbers and their polynomials, (2021), arXiv preprint arXiv:2111.09592.
  • [16] P. Catarino, H. Campos, H., P. Vasco, On the Mersenne sequence, Ann. Math. Inform., 46 (2016), 37-53.
  • [17] N. Saba, A. Boussayoud, K. V. V. Kanuri, Mersenne Lucas numbers and complete homogeneous symmetric functions, J. Math. Comput. Sci., 24(2) (2021), 127- 139.
  • [18] A. Patra, M. K. Kaabar, Catalan transform of k-Balancing sequences, Int. J. Math. Math. Sci., 2021(1) 2021, 9987314.
  • [19] S. Kapoor, P. Kumar, Catalan Transformation of (s; t) Padovan Sequences, Asian Journal of Pure and Applied Mathematics, 5(1) (2023), 170-178.
  • [20] P. J. Larcombe, P. D. Wilson, On the generating function of the Catalan sequence: A historical perspective, Congr. Numer., 149 (2001), 97-108.
  • [21] J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq., 4(1) 2001, 1-11.
  • [22] P. M. Rajkovi´c, M. D. Petkovi´c, P. Barry, The Hankel transform of the sum of consecutive generalized Catalan numbers, Integral Transforms Spec. Funct., 18(4) (2007), 285-296.
  • [23] K. Parmar, V. R. Gorty, Quaternion Hankel Transform and its Generalization, Sahand Commun. Math. Anal., 21(1) (2024), 67-81.
  • [24] E. Özkan, M. Uysal, B. Kulogğu, Catalan transform of the incomplete Jacobsthal numbers and incomplete generalized Jacobsthal polynomials, Asian-Eur. J. Math., 15(6) (2022), 2250119.
Year 2025, Volume: 8 Issue: 1, 1 - 7
https://doi.org/10.32323/ujma.1566270

Abstract

References

  • [1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2019.
  • [2] S. Falcon, A. Plaza, On the Fibonacci k-Numbers, Chaos Solutions Fractals, 32(5) (2007), 1615-1624.
  • [3] S. Falcon, Catalan transform of the k-Fibonacci sequence, Communications of the Korean Mathematical Society, 28(4) (2013), 827–832.
  • [4] Y. Soykan, On generalized p-Mersenne numbers, Earthline Journal of Mathematical Sciences, 8(1) (2022), 83-120.
  • [5] R. Frontczak, T. P. Goy, Mersenne-Horadam identities using generating functions, Carpathian Math. Publ., 12(1) (2020), 34-45.
  • [6] M. Uysal, M. Kumari, B. Kuloğlu, K. Prasad, E. Özkan, On the hyperbolic k-Mersenne and k-Mersenne-Lucas octonions, Kragujevac J. Math.,49(5) (2025), 765-779.
  • [7] D. Tasci, On Gaussian Mersenne numbers, J. Sci. Arts, 21(4) (2021), 1021-1028.
  • [8] P. Barry, A Catalan transform and related transformations on integer sequences, J. Integer Seq. J., 8(4) (2005), 1-24.
  • [9] M. Chelgham, A. Boussayoud, On the k-Mersenne-Lucas numbers, Notes Number Theory Discrete Math., 27(1) (2021), 7-13.
  • [10] M. Kumari, K, Prasad, J, Tanti, On the generalization of Mersenne and Gaussian Mersenne polynomials, J. Anal., 32(3) (2024), 931-947.
  • [11] Y. Soykan, A study on generalized Mersenne numbers, Journal of Progressive Research in Mathematics, 18(3) (2021), 90-112.
  • [12] S. Demiriz, S. Erdem, Mersenne matrix operator and its application in p-summable sequence space, Commun. Adv. Math. Sci., 7(1)(2024), 42-55.
  • [13] E. Özkan, M. Uysal, Mersenne-Lucas hybrid numbers, Math. Montisnigri, 52(2021), 17-29.
  • [14] M. Kumari, K. Prasad, R. Mohanta, Algebra of quaternions and octonions involving higher order Mersenne numbers, Proc. Indian Nat. Sci. Acad., (2024), 1-10.
  • [15] M. Kumari, J. Tanti, K. Prasad, On some new families of k-Mersenne and generalized k-Gaussian Mersenne numbers and their polynomials, (2021), arXiv preprint arXiv:2111.09592.
  • [16] P. Catarino, H. Campos, H., P. Vasco, On the Mersenne sequence, Ann. Math. Inform., 46 (2016), 37-53.
  • [17] N. Saba, A. Boussayoud, K. V. V. Kanuri, Mersenne Lucas numbers and complete homogeneous symmetric functions, J. Math. Comput. Sci., 24(2) (2021), 127- 139.
  • [18] A. Patra, M. K. Kaabar, Catalan transform of k-Balancing sequences, Int. J. Math. Math. Sci., 2021(1) 2021, 9987314.
  • [19] S. Kapoor, P. Kumar, Catalan Transformation of (s; t) Padovan Sequences, Asian Journal of Pure and Applied Mathematics, 5(1) (2023), 170-178.
  • [20] P. J. Larcombe, P. D. Wilson, On the generating function of the Catalan sequence: A historical perspective, Congr. Numer., 149 (2001), 97-108.
  • [21] J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq., 4(1) 2001, 1-11.
  • [22] P. M. Rajkovi´c, M. D. Petkovi´c, P. Barry, The Hankel transform of the sum of consecutive generalized Catalan numbers, Integral Transforms Spec. Funct., 18(4) (2007), 285-296.
  • [23] K. Parmar, V. R. Gorty, Quaternion Hankel Transform and its Generalization, Sahand Commun. Math. Anal., 21(1) (2024), 67-81.
  • [24] E. Özkan, M. Uysal, B. Kulogğu, Catalan transform of the incomplete Jacobsthal numbers and incomplete generalized Jacobsthal polynomials, Asian-Eur. J. Math., 15(6) (2022), 2250119.
There are 24 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Engin Özkan 0000-0002-4188-7248

Bayram Şen 0000-0002-7721-9487

Hakan Akkuş 0000-0001-9716-9424

Mine Uysal 0000-0002-2362-3097

Early Pub Date February 23, 2025
Publication Date
Submission Date October 13, 2024
Acceptance Date February 6, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Özkan, E., Şen, B., Akkuş, H., Uysal, M. (2025). A Study on the k-Mersenne and k-Mersenne-Lucas Sequences. Universal Journal of Mathematics and Applications, 8(1), 1-7. https://doi.org/10.32323/ujma.1566270
AMA Özkan E, Şen B, Akkuş H, Uysal M. A Study on the k-Mersenne and k-Mersenne-Lucas Sequences. Univ. J. Math. Appl. February 2025;8(1):1-7. doi:10.32323/ujma.1566270
Chicago Özkan, Engin, Bayram Şen, Hakan Akkuş, and Mine Uysal. “A Study on the K-Mersenne and K-Mersenne-Lucas Sequences”. Universal Journal of Mathematics and Applications 8, no. 1 (February 2025): 1-7. https://doi.org/10.32323/ujma.1566270.
EndNote Özkan E, Şen B, Akkuş H, Uysal M (February 1, 2025) A Study on the k-Mersenne and k-Mersenne-Lucas Sequences. Universal Journal of Mathematics and Applications 8 1 1–7.
IEEE E. Özkan, B. Şen, H. Akkuş, and M. Uysal, “A Study on the k-Mersenne and k-Mersenne-Lucas Sequences”, Univ. J. Math. Appl., vol. 8, no. 1, pp. 1–7, 2025, doi: 10.32323/ujma.1566270.
ISNAD Özkan, Engin et al. “A Study on the K-Mersenne and K-Mersenne-Lucas Sequences”. Universal Journal of Mathematics and Applications 8/1 (February 2025), 1-7. https://doi.org/10.32323/ujma.1566270.
JAMA Özkan E, Şen B, Akkuş H, Uysal M. A Study on the k-Mersenne and k-Mersenne-Lucas Sequences. Univ. J. Math. Appl. 2025;8:1–7.
MLA Özkan, Engin et al. “A Study on the K-Mersenne and K-Mersenne-Lucas Sequences”. Universal Journal of Mathematics and Applications, vol. 8, no. 1, 2025, pp. 1-7, doi:10.32323/ujma.1566270.
Vancouver Özkan E, Şen B, Akkuş H, Uysal M. A Study on the k-Mersenne and k-Mersenne-Lucas Sequences. Univ. J. Math. Appl. 2025;8(1):1-7.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.