Review
BibTex RIS Cite

TARIM İLAÇLARININ BAL ARILARINDA (APİS MELLİFERA L.) ERKEK ARI ÜZERİNDEKİ ETKİLERİ

Year 2019, Volume: 19 Issue: 2, 188 - 194, 12.11.2019
https://doi.org/10.31467/uluaricilik.626929

Abstract

Erkek arılarla yapılan yayınlar tozlaşma, yavru ve bal üretimine katkı sağlamadığı için işçi ve ana
arılardan çok daha azdır. Fakat ana arının üremedeki başarısı kaliteli erkek arılarla başarılı bir şekilde
çiftleşmesinin bir sonucudur. Bunun yanında erkek arı ile çalışmalar çiftleşmenin kalitesi ve etkinliğini
artırabilir. Erkek arıların üremedeki rekabeti çevresel ve kovan içi gelişme faktörlerinden etkilenir ve
bu durum ana arının ölümü veya ideal sperm seviyesinin altında kalmasına neden olabilir. Bu sorun
ana arıyı olumsuz etkileme ve dolayısı ile koloninin toplam üretim ve yaşamını çok ciddi derecede
olumsuz etkileyecek sonuçlar doğurabilir. Erkek arılar böcek ve akar öldürücü kimyasallara karşı çok
hassastırlar. Bu kimysalların çoğu hem erkek arı sperm kalitesi, spermlerin yaşam gücü ve
konsantrasyonu ve hem de erkek üretimi ve karakterleri üzerinde olumsuz etkileri bulunmaktadır. Bu
ilaçlar erkek arıların yavru döneminde önce işçi arılar ve daha sonra hem işçi arılar ve hemde kendileri
kovan içinde beslenirken olumsuz etkilenmektedir.
Bu derleme çalışması tarım ilaçlarına maruz kalan erkek arıların nasıl etkilenebileceği konusundaki
çalışmaları kapsamaktadır.



 

References

  • Aboushaara H., M. Staron, T. Cermakova. (2017). Impacts of oxalic acid, thymol, and potassium citrate as Varroa control materials on some parameters of honey bees. Turkish Journal of Veterinary and Animal Sciences 41(2): 238-247.
  • Amiri E., M.K. Strand, O. Rueppell, D.R. Tarpy. (2017). Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. Insects 8(2): 48.
  • Ben Abdelkader F., N. Barbouche, L. Belzunces, J. Brunet. (2015). Effects of Some Insecticides on the Viability and the ATP Synthesis of Honeybee Drone’s Spermatozoid in vitro Exposed. Tunis. J. Plant Prot. 10(1): 79-93.
  • Ben Abdelkader F., G. Kairo, M. Bonnet, N. Barbouche, L.P. Belzunces, J.L. Brunet. (2019). Effects of clothianidin on antioxidant enzyme activities and malondialdehyde level in honey bee drone semen. Journal of Apicultural Research DOI: 10.1080/00218839.2019.1655182: 1-6.
  • Ben Abdelkader F., G. Kairo, S. Tchamitchian, M. Bonnet, M. Cousin, N. Barbouche, L. Belzunces, J. Brunet. (2018). Effects of clothianidin exposure on semen parameters of honey bee drones. Journal of New Sciences 59: 3791-3798.
  • Berg S., N. Koeniger, G. Koeniger, S. Fuchs. (1997). Body size and reproductive success of drones (Apis mellifera L). Apidologie 28(6): 449-460.
  • Burley L.M., R.D. Fell, R.G. Saacke. (2008). Survival of honey bee (Hymenoptera: Apidae) spermatozoa incubated at room temperature from drones exposed to miticides. Journal of economic entomology 101: 1081-1087.
  • Ciereszko A., J. Wilde, G.J. Dietrich, M. Siuda, B. Bąk, S. Judycka, H. Karol. (2017). Sperm parameters of honeybee drones exposed to imidacloprid. Apidologie 48(2): 211-222.
  • Currie R. (1987). biology and behaviour of drones. Bee world 1987: 129-143.
  • De Guzman L.I., T.E. Rinderer, V. Lancaster, G. Delatte, A. Stelzer. (1999). Varroa in the Mating Yard: III. The Effects of Formic Acid Gel-Formulation on Drone Production. American Bee Journal 139: 304-307.
  • Fisher A., J. Rangel. (2018). Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLOS ONE 13(12): e0208630.
  • Frazier M., C. Mullin, J. Frazier, S. Ashcraft. (2008). What have pesticides got to do with it? Am. Bee J. 148: 521-524.
  • Fukuda H., T. Ohtani. (1977). Survival and life span of drone honeybees. Res. Pop. Ecol. 19(1): 51-68.
  • Girolami V., L. Mazzon, A. Squartini, N. Mori, M. Marzaro, A. Di Bernardo, M. Greatti, C. Giorio, A. Tapparo. (2009). Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. Journal of economic entomology 102(5): 1808-1815.
  • Goulson D., E. Nicholls, C. Botías, E.L. Rotheray. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science (New York, N.Y.) 347(6229): 1255957.
  • Haydak M.H. (1957). The Food of the Drone Larvae1. Annals of the Entomological Society of America 50(1): 73-75.
  • Johnson R.M., L. Dahlgren, B.D. Siegfried, M.D. Ellis. (2013). Effect of in-hive miticides on drone honey bee survival and sperm viability. J. Api. Res. 52: 88-95.
  • Kairo G., B. Provost, S. Tchamitchian, F. Ben Abdelkader, M. Bonnet, M. Cousin, J. Sénéchal, P. Benet, A. Kretzschmar, L.P. Belzunces, J.-L. Brunet. (2016). Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Scientific reports 6: 31904.
  • Kairo G., B. Provost, S. Tchamitchian, F. Ben Abdelkader, M. Bonnet, M. Cousin, J. Senechal, P. Benet, A. Kretzschmar, L.P. Belzunces, J.L. Brunet. (2016). Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Scientific reports 6: 31904.
  • Koeniger G., N. Koeniger, J. Ellis, L.J. Connor. (2014) Mating biology of honey bees (Apis mellifera). Wicwas Press LLC, Kalamazoo [Michigan].
  • Metz B.N., D.R. Tarpy. (2019). Reproductive Senescence in Drones of the Honey Bee (Apis mellifera). Insects 10(1): 11.Mullin C.A., M. Frazier, J.L. Frazier, S. Ashcraft, R. Simonds, D. vanEngelsdorp, J.S. Pettis. (2010). High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health. PLoS ONE 5(3): e9754.
  • Neumann P., N.L. Carreck. (2010). Honey bee colony losses. J. Apic. Res. 49(1): 1-6.
  • Neumann P., R. Moritz. (2000). Testing genetic variance hypotheses for the evolution of polyandry in the honeybee (Apis mellifera L.). Ins. Soc 47(3): 271-279.
  • Page R.E., Y.S. Peng. (2001). Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exper. Gerontol. 36(4–6): 695-711.
  • Ravoet J., W. Reybroeck, D.C. de Graaf. (2015). Pesticides for apicultural and/or agricultural application found in Belgian honey bee wax combs. Bulletin of environmental contamination and toxicology 94(5): 543-548.
  • Reybroeck W., E. Daeseleire, H.F. De Brabander, L. Herman. (2012). Antimicrobials in beekeeping. Veterinary microbiology 158(1-2): 1-11.Rhodes J.W. (2008) Semen Production in Drone Honeybees. , in: Goverm. C.A. (Ed.).
  • Rhodes J.W., S. Harden, R. Spooner-Hart, D.L. Anderson, G. Wheen. (2010). Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie 42(1): 29-38.
  • Rinderer T.E., L. I. De Guzman, V. A. Lancaster, G. T. Delatte, J.A. Stelzer. (1999). Varroa in the mating yard: 1. the effects of Varroa jacobsoni and Apistan on drone honey bees. American Bee Journal 139: 134-139.
  • Rosenkranz P., P. Aumeier, B. Ziegelmann. (2010). Biology and control of Varroa destructor. Journal of invertebrate pathology 103 Suppl 1: S96-119.
  • Shoukry R.S., A. Khattaby, A. El-Sheakh, A. Abo-Ghalia, S.M. Elbanna. (2013). Effect of some materials for controlling varroa mite on the honeybee drones (Apis mellifera L.). Egyptian Journal of Agricultural Research 91(3): 825-834.
  • Smith M.L., M.M. Ostwald, J.C. Loftus, T.D. Seeley. (2014). A critical number of workers in a honeybee colony triggers investment in reproduction. Die Naturwissenschaften 101(10): 783-790.
  • Snodgrass R.E. (1984) Anatomy of the Honey Bee. Comstock Pub. Associates.
  • Straub L., L. Villamar-Bouza, S. Bruckner, P. Chantawannakul, L. Gauthier, K. Khongphinitbunjong, G. Retschnig, A. Troxler, B. Vidondo, P. Neumann, G.R. Williams. (2016). Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proceedings. Biological sciences 283(1835).
  • Tarpy D.R., D.A. Delaney, T.D. Seeley. (2015). Mating Frequencies of Honey Bee Queens (Apis mellifera L.) in a Population of Feral Colonies in the Northeastern United States. PLOS ONE 10(3): e0118734.
  • Traynor K.S., J.S. Pettis, D.R. Tarpy, C.A. Mullin, J.L. Frazier, M. Frazier, D. vanEngelsdorp. (2016). In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Scientific reports 6: 33207.
  • Wauchope R.D. (1978). The Pesticide Content of Surface Water Draining from Agricultural Fields—A Review1. Journal of Environmental Quality 7(4): 459-472.
  • Winston M.L. (1987) The biology of the honey bee. Harvard University Press.
  • Woyke J. (1955). Multiple mating of the honeybee queen (Apis mellifica L.) in one nuptial flight. Bull. Acad. Polon. Sci. Cl. II 3(5): 175-180.
  • Zhu W., D.R. Schmehl, C.A. Mullin, J.L. Frazier. (2014). Four Common Pesticides, Their Mixtures and a Formulation Solvent in the Hive Environment Have High Oral Toxicity to Honey Bee Larvae. PLOS ONE 9(1): e77547.

IMPACT OF PESTICIDES ON HONEYBEE (Apis mellifera L.) DRONES

Year 2019, Volume: 19 Issue: 2, 188 - 194, 12.11.2019
https://doi.org/10.31467/uluaricilik.626929

Abstract

Published research about drones is far less extensive than about either worker or queen bees because drones do not contribute to brood production, pollination or honey production. However, much of the reproductive quality of the queen, though, is a function of the mating success and quality of the drones. Besides, studies of drones could help in breeding programs by improving the efficiency and quality of mating. Drones whose reproductive competitiveness is affected by several environmental and in-hive factors during development or adulthood may contribute dead or suboptimal sperm to a queen, which can have severe negative consequences not only for the queen herself but for her colony’s overall productivity and survival. We review here studies that describe pesticide exposure that may influence drone fitness. The present review shows that drones are very sensitive to acaricides and insecticides. Most of them have negative impacts not only on drone semen quality such as spermatozoid viability and concentration but also on drone production and their traits.

 

References

  • Aboushaara H., M. Staron, T. Cermakova. (2017). Impacts of oxalic acid, thymol, and potassium citrate as Varroa control materials on some parameters of honey bees. Turkish Journal of Veterinary and Animal Sciences 41(2): 238-247.
  • Amiri E., M.K. Strand, O. Rueppell, D.R. Tarpy. (2017). Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. Insects 8(2): 48.
  • Ben Abdelkader F., N. Barbouche, L. Belzunces, J. Brunet. (2015). Effects of Some Insecticides on the Viability and the ATP Synthesis of Honeybee Drone’s Spermatozoid in vitro Exposed. Tunis. J. Plant Prot. 10(1): 79-93.
  • Ben Abdelkader F., G. Kairo, M. Bonnet, N. Barbouche, L.P. Belzunces, J.L. Brunet. (2019). Effects of clothianidin on antioxidant enzyme activities and malondialdehyde level in honey bee drone semen. Journal of Apicultural Research DOI: 10.1080/00218839.2019.1655182: 1-6.
  • Ben Abdelkader F., G. Kairo, S. Tchamitchian, M. Bonnet, M. Cousin, N. Barbouche, L. Belzunces, J. Brunet. (2018). Effects of clothianidin exposure on semen parameters of honey bee drones. Journal of New Sciences 59: 3791-3798.
  • Berg S., N. Koeniger, G. Koeniger, S. Fuchs. (1997). Body size and reproductive success of drones (Apis mellifera L). Apidologie 28(6): 449-460.
  • Burley L.M., R.D. Fell, R.G. Saacke. (2008). Survival of honey bee (Hymenoptera: Apidae) spermatozoa incubated at room temperature from drones exposed to miticides. Journal of economic entomology 101: 1081-1087.
  • Ciereszko A., J. Wilde, G.J. Dietrich, M. Siuda, B. Bąk, S. Judycka, H. Karol. (2017). Sperm parameters of honeybee drones exposed to imidacloprid. Apidologie 48(2): 211-222.
  • Currie R. (1987). biology and behaviour of drones. Bee world 1987: 129-143.
  • De Guzman L.I., T.E. Rinderer, V. Lancaster, G. Delatte, A. Stelzer. (1999). Varroa in the Mating Yard: III. The Effects of Formic Acid Gel-Formulation on Drone Production. American Bee Journal 139: 304-307.
  • Fisher A., J. Rangel. (2018). Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLOS ONE 13(12): e0208630.
  • Frazier M., C. Mullin, J. Frazier, S. Ashcraft. (2008). What have pesticides got to do with it? Am. Bee J. 148: 521-524.
  • Fukuda H., T. Ohtani. (1977). Survival and life span of drone honeybees. Res. Pop. Ecol. 19(1): 51-68.
  • Girolami V., L. Mazzon, A. Squartini, N. Mori, M. Marzaro, A. Di Bernardo, M. Greatti, C. Giorio, A. Tapparo. (2009). Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. Journal of economic entomology 102(5): 1808-1815.
  • Goulson D., E. Nicholls, C. Botías, E.L. Rotheray. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science (New York, N.Y.) 347(6229): 1255957.
  • Haydak M.H. (1957). The Food of the Drone Larvae1. Annals of the Entomological Society of America 50(1): 73-75.
  • Johnson R.M., L. Dahlgren, B.D. Siegfried, M.D. Ellis. (2013). Effect of in-hive miticides on drone honey bee survival and sperm viability. J. Api. Res. 52: 88-95.
  • Kairo G., B. Provost, S. Tchamitchian, F. Ben Abdelkader, M. Bonnet, M. Cousin, J. Sénéchal, P. Benet, A. Kretzschmar, L.P. Belzunces, J.-L. Brunet. (2016). Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Scientific reports 6: 31904.
  • Kairo G., B. Provost, S. Tchamitchian, F. Ben Abdelkader, M. Bonnet, M. Cousin, J. Senechal, P. Benet, A. Kretzschmar, L.P. Belzunces, J.L. Brunet. (2016). Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Scientific reports 6: 31904.
  • Koeniger G., N. Koeniger, J. Ellis, L.J. Connor. (2014) Mating biology of honey bees (Apis mellifera). Wicwas Press LLC, Kalamazoo [Michigan].
  • Metz B.N., D.R. Tarpy. (2019). Reproductive Senescence in Drones of the Honey Bee (Apis mellifera). Insects 10(1): 11.Mullin C.A., M. Frazier, J.L. Frazier, S. Ashcraft, R. Simonds, D. vanEngelsdorp, J.S. Pettis. (2010). High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health. PLoS ONE 5(3): e9754.
  • Neumann P., N.L. Carreck. (2010). Honey bee colony losses. J. Apic. Res. 49(1): 1-6.
  • Neumann P., R. Moritz. (2000). Testing genetic variance hypotheses for the evolution of polyandry in the honeybee (Apis mellifera L.). Ins. Soc 47(3): 271-279.
  • Page R.E., Y.S. Peng. (2001). Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exper. Gerontol. 36(4–6): 695-711.
  • Ravoet J., W. Reybroeck, D.C. de Graaf. (2015). Pesticides for apicultural and/or agricultural application found in Belgian honey bee wax combs. Bulletin of environmental contamination and toxicology 94(5): 543-548.
  • Reybroeck W., E. Daeseleire, H.F. De Brabander, L. Herman. (2012). Antimicrobials in beekeeping. Veterinary microbiology 158(1-2): 1-11.Rhodes J.W. (2008) Semen Production in Drone Honeybees. , in: Goverm. C.A. (Ed.).
  • Rhodes J.W., S. Harden, R. Spooner-Hart, D.L. Anderson, G. Wheen. (2010). Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie 42(1): 29-38.
  • Rinderer T.E., L. I. De Guzman, V. A. Lancaster, G. T. Delatte, J.A. Stelzer. (1999). Varroa in the mating yard: 1. the effects of Varroa jacobsoni and Apistan on drone honey bees. American Bee Journal 139: 134-139.
  • Rosenkranz P., P. Aumeier, B. Ziegelmann. (2010). Biology and control of Varroa destructor. Journal of invertebrate pathology 103 Suppl 1: S96-119.
  • Shoukry R.S., A. Khattaby, A. El-Sheakh, A. Abo-Ghalia, S.M. Elbanna. (2013). Effect of some materials for controlling varroa mite on the honeybee drones (Apis mellifera L.). Egyptian Journal of Agricultural Research 91(3): 825-834.
  • Smith M.L., M.M. Ostwald, J.C. Loftus, T.D. Seeley. (2014). A critical number of workers in a honeybee colony triggers investment in reproduction. Die Naturwissenschaften 101(10): 783-790.
  • Snodgrass R.E. (1984) Anatomy of the Honey Bee. Comstock Pub. Associates.
  • Straub L., L. Villamar-Bouza, S. Bruckner, P. Chantawannakul, L. Gauthier, K. Khongphinitbunjong, G. Retschnig, A. Troxler, B. Vidondo, P. Neumann, G.R. Williams. (2016). Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proceedings. Biological sciences 283(1835).
  • Tarpy D.R., D.A. Delaney, T.D. Seeley. (2015). Mating Frequencies of Honey Bee Queens (Apis mellifera L.) in a Population of Feral Colonies in the Northeastern United States. PLOS ONE 10(3): e0118734.
  • Traynor K.S., J.S. Pettis, D.R. Tarpy, C.A. Mullin, J.L. Frazier, M. Frazier, D. vanEngelsdorp. (2016). In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Scientific reports 6: 33207.
  • Wauchope R.D. (1978). The Pesticide Content of Surface Water Draining from Agricultural Fields—A Review1. Journal of Environmental Quality 7(4): 459-472.
  • Winston M.L. (1987) The biology of the honey bee. Harvard University Press.
  • Woyke J. (1955). Multiple mating of the honeybee queen (Apis mellifica L.) in one nuptial flight. Bull. Acad. Polon. Sci. Cl. II 3(5): 175-180.
  • Zhu W., D.R. Schmehl, C.A. Mullin, J.L. Frazier. (2014). Four Common Pesticides, Their Mixtures and a Formulation Solvent in the Hive Environment Have High Oral Toxicity to Honey Bee Larvae. PLOS ONE 9(1): e77547.
There are 39 citations in total.

Details

Primary Language English
Subjects Zootechny (Other)
Journal Section Review
Authors

Faten Ben Abdelkader 0000-0003-4063-5521

Publication Date November 12, 2019
Acceptance Date October 23, 2019
Published in Issue Year 2019 Volume: 19 Issue: 2

Cite

Vancouver Ben Abdelkader F. IMPACT OF PESTICIDES ON HONEYBEE (Apis mellifera L.) DRONES. U. Arı. D.-U. Bee J. 2019;19(2):188-94.

Important Note: Since the author-referee information is kept confidential on both sides in our journal, both the author and the referees must upload the document to the system after removing their personal information in the review document section.

Note: Authors can also use homepage of our Journal.

https://creativecommons.org/licenses/by-nc-nd/4.0/

download
 

This work is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International.