Research Article
BibTex RIS Cite

BAL ARISININ (APİS MELLİFERA) BAKTERİYEL FLORASININ BELİRLENMESİ, BAKTERİLERİN CRY GEN ANALİZLERİ VE BAL ARISI SAĞLIĞININ KORUNMASI ÜZERİNE BİR ÇALIŞMA

Year 2021, Volume: 21 Issue: 2, 157 - 167, 11.11.2021
https://doi.org/10.31467/uluaricilik.954479

Abstract

Arıcılık gerek Türkiye’de gerekse dünyada tarım ekonomisine ve tozlaşma yoluyla bitkisel üretime önemli katkılar sağlar. Arıların olmadığı bir ortamda bitkisel üretimin %47 oranında azalabileceği değerlendirilmektedir. Arıcılık sektöründe birçok etken de bal üretimini olumsuz yönde etkilemektedir. Bu sebepler arasında mikroorganizma sebepli hastalıkların yanı sıra, organizma kaynaklı hastalıklar ve tehlikeler de ön sıralarda yer almaktadır. Günümüzde bu zararlılarla mücadelede birçok yöntem kullanılmakta olup halen önüne geçilememiş durumdadır. Bu yöntemler arasında biyolojik mücadele yöntemi kullanılmamaktadır. Buradan yola çıkarak, çalışmanın amacı, bal arılarının sağlığını korumak için biyolojik bir etmen kullanılarak hastalık ve zararlı organizmalarla mücadele konusunda biyopestisit geliştirilmesinde taban oluşturmaktır. Bu bağlamda çalışma sonucunda bal arılarından 16 adet bakteri izolasyonu gerçekleştirilmiştir. Elde edilen bakterilerden 12 tanesi Bacillus cinsine, iki tanesi Lysinibacillus cinsine, bir tanesi Paenibacillus cinsine ait iken bir tanesi de Pantoea cinsine aittir. Bu bakterilerin moleküler ve biyokimyasal tanımlamaları yapılarak GenBank a kayıt yaptırılmış ve kayıt numaraları alınmıştır. On beş adet Bacillus, Paenibacillus ve Lysinibacillus cinslerine ait bakterinin cry gen analizleri yapılmıştır. Bilindiği üzere cry genleri hem zararlılara karşı kullanılma potansiyeline sahiptir hem de ileride bu bakteri ve genleri geliştirilerek biyopestisit kullanılma potansiyeli olabilecektir. Bu sonuçlara göre cry1 geni 8 bakteride ve cry3 geni de 3 bakteride gözlemlenmiştir. cry2 ve cry4 genleri bu bakterilerde tespit edilememiştir. Bu genleri taşıyan bakteriler bal arısı sağlığı açısından büyük önem taşımaktadır. Bakteriler biyopestisit olarak geliştirilerek başta organizma gibi zaralılar olmak üzere farklı arı hastalıklarına karşı kullanılma potansiyeline sahiptirler.

Supporting Institution

Trabzon Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

21HZP00159

Thanks

Bu çalışma Trabzon Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 21HZP00159 nolu proje kapsamında desteklenmiştir.

References

  • Altschul, SF., Gish, W., Miller, W., Myers, EW., Lipman, DJ. (1990). Basic local alignment search tool. J Mol Biol. Oct 5;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2. PMID: 2231712.
  • Aronson, AI. (1993). Two Faces of Bacillus thuringiensis Insecticidal Proteins and Post-Exponential Survival, Mol. Microbiol., 7, 489–496.
  • Barganska, Z., Slebioda M., Namiesnik, J. (2011). Determination of antibiotic residues in honey. Trends in Analytical Chemistry, 30 (7): 1035–1041.
  • Beegle, CC., Yamamoto, T. (1992). History of Bacillus thuringiensis Berliner Research and Development, Can. Entomol., 124, 587-616.
  • Beno, SM., Cheng, RA., Orsi, RH., Duncan, DR., Guo, X., Kovac, J., Carroll, LM., Martin, NH., Wiedmann, M. (2020). Paenibacillus odorifer, the Predominant Paenibacillus Species Isolated from Milk in the United States, Demonstrates Genetic and Phenotypic Conservation of Psychrotolerance but Clade-Associated Differences in Nitrogen Metabolic Pathways. mSphere. 22;5(1):e00739-19. doi: 10.1128/mSphere.00739-19. PMID: 31969477; PMCID: PMC7407005.
  • Ben-Dov, E., Boussiba, S., Zaritsky, A., (1995). Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 177, 2581e2587.
  • Brutscher, LM., Daughenbaugh, KF., Flenniken, ML. (2015). Antiviral defense mechanisms in honey bees. Curr Opin Insect Sci.10:71–82., doi: 10.1016/j.cois.2015.04.016.
  • Charles, JF., Nielsen-Leroux, C., Delecluse, C. (1996). Bacillus sphaericus Toxins: Molecular Biology and Mode of Action, Ann. Rev. Entomol., 41, 451-472.
  • Cruz, AT., Cazacu, AC., Allen, CH. (2007). Pantoea agglomerans, a plant pathogen causing human disease. Journal of Clinical Microbiology, 45(6): 1989-1992.
  • DeGrandi-Hoffman, G., Chen, Y. (2015). Nutrition, immunity and viral infections in honey bees. Curr Opin Insect Sci. 10:170–176., doi: 10.1016/j.cois.2015.05.007.
  • Doğaroğlu, M., Samancı, T. (2006). Balda Yorelere Gore Kalıntı ile ve Orijin Tespit Projesi. Teknoloji ve Yenilik Destek Programları Başkanlığı (TEYDEB) Arıcılık Raporu, Ankara, Turkiye.
  • Evans, JD., Armstrong, TN. (2005). Inhibition of the American foulbrood bacterium, Paenibacillus larvae, by bacteria isolated from honey bees. J Apic. Res. 44: 168–171., doi: 10.1080/00218839.2005.11101173.
  • Evans, JD., Aronstein, K., Chen, YP., Hetru, C., Imler, JL., Jiang, H., Kanost, M., Thompson, GJ., Zou, Z., Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15 (5): 645–656., doi: 10.1111/j.1365- 2583.2006.00682.x.
  • Evans, JD., Spivak, M. (2010). Socialized medicine: Individual and communal disease barriers in honey bees. J Invertebr Pathol. 103 (Supplement): S62–S72., doi: 10.1016/j.jip.2009.06.019.
  • Feitelson, JS. (1993). The Bacillus thuringiensis Family Tree, In “Advanced Engineered Pesticides”, (Kim, L., Ed.), Marcel Dekker. Inc., New York, 63-71.
  • Feitelson, JS., Payne, J., Kim, L. (1992). Bacillus thuringiensis: Insect and Beyond, Bio/Technology, 10, 271-275.
  • Forsgren, E., Olofsson, T. C., Vasquez A., Fries, I., (2010). Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie, 41: 99–108.
  • Gilliam, M. (1997). Identification and roles of nonpathogenic microflora associated with honey bees. FEMS Microbiol Lett. 155:1–10., doi: 10.1111/j.1574-6968.1997.tb12678.x.
  • Höfte, H., Whiteley HR. (1989). Insecticidal Crystal Proteins of Bacillus thuringiensis, Microbiol. Rev., 53, 242-255.
  • Ilyasov, RA., Gaifullina, LR., Saltykova, ES., Poskryakov, AV., Nikolenko, AG. (2012). Review of the expression of antimicrobial peptide defensin in honey bees Apis mellifera L. Journal of Apicultural Science 56 (1), 115-124. doi: 10.2478/v10289-012-0013-y.
  • Ilyasov, R., Lim, S., Lee, ML., Kwon, HW., Nikolenko, A. (2021). Effect of miticides amitraz and fluvalinate on reproduction and productivity of honey bee Apis mellifera. Uludag Bee Journal (Uludağ Arıcılık Dergisi) 21 (1), 21-30. doi: 10.31467/uluaricilik.883775.
  • Ishiawata, S. (1901). On a Kind of Severe Flacherie (sotto disease), Dainihon Sanshi Kaiho, 114, 1-5.
  • Klein, MG., Jackson, TA. (1992). Bacterial Diseases of Scarabs, In “Use of Pathogens in Scarab Pest Management” (T.A. Jackson, T. A. ve Glare, T. R., Eds.), 43-61, Intercept, Andover.
  • Klein, MG., Kaya HK. (1995). Bacillus and Serretia Species for Scarab control, Mem. Inst. Oswaldo Cruz, 90, 87-95.
  • Knowles, BH. (1994). Mechanism of Action of Bacillus thuringiensis Insecticidal -endotoxin, In Advances in Insect Physiology, Volume 24. Evans, P.D. (ed.), pp. 275-308. Academic Press, London.
  • Kurşun, Ö., Ünal, N., Cesur, S., Altın, N., Canbakan, B., Argun, C., Koldaş, K., Şencan, İ. (2012). Pantoea agglomerans’a Bağlı Ventilatörle İlişkili Pnömoni Gelişen Bir Olgu. Mikrobiyoloji Bülteni, 46(2):295-298 Olgu Sunumu.
  • Lacey, LA., Frutos, R., Kaya, HK., Vail, P. (2001). Insect Pathogens as Biological Control Agents: Do They Have a Future?, Biol. Control, 21, 230-248.
  • Lacey, LA., Undeen, AH. (1986). Microbial Control of Black Flies and Mosquitoes, Ann. Rev. Entomol., 31, 265-296.
  • Larsen, A., Reynaldi, JF., Guzmán-Novoa, E. (2019). Fundaments of the honey bee (Apis mellifera) immune system. Review. Rev Mex Cienc Pecu 10(3):705-728., doi: 10.22319/rmcp.v10i3.4785.
  • Li, G., Zhao, H., Liu, Z., Wang, H., Xu, B., Guo, X. (2018). The Wisdom of Honeybee Defenses Against Environmental Stresses. Front Microbiol. 9 (722): 1-15., doi: 10.3389/fmicb.2018.00722.
  • Mutinelli, F. (2003). Practical application of antibacterial drugs for the control of honey bee diseases. Apiacta, 38: 149-155.
  • Nicolas, L., Regis, LN., Rios, E. M. (1994). Role of The Exosporium in The Stability of The Bacillus sphaericus Binary Toxin, FEMS Microbiol. Lett., 124, 271-276.
  • Nielsen-Leroux, C., Pasquier, F., Charles, JF., Sinegre, G., Gaven, B., Pasteur, N. (1997). Resistance to Bacillus sphaericus Involves Different Mechanism in Culex pipiens (Diptera: Culicidae) Larvae, J. Med. Entomol., 34, 321-327.
  • Olofsson, TC., Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol. 57(4):356-363., doi:10.1007/s00284-008- 9202-0.
  • Rao, DR., Mani, TR., Rajendran, R., Joseph, AS., Gajanana, A., Reuben, R. (1995). Development of a High Level of Resistance to Bacillus sphaericus in a Field Population of Culex quinquefasciatus from Kochi, India, J. Am. Mosq. Control Assoc., 11, 1-5.
  • Reynaldi, FJ., De Giusti, MR., Alippi, AM. (2004). Inhibition of the growth of Ascosphaera apis by Bacillus and Paenibacillus strains isolated from honey. Rev Argent Microbiol. 36(1):52- 55.
  • Sambrook, J., Fritsch, EF., Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
  • Schmid, MR., Brockmann, A., Pirk, CW., Stanley, DW., Tautz, J. (2008). Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J Insect Physiol.54(2):439-444., doi:10.1016/j.jinsphys.2007.11.002.
  • Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, DR., Deon, DH. (1998). Bacillus thuringiensis and its Pesticidal Proteins, Microbiol. Mol. Biol. Rev., 62, 775-806.
  • Seigel, JP. (2001). The Mammalian Safety of Bacillus thuringiensis-Based Insecticides, J. Invertebr. Pathol., 77, 13-21.
  • Sneath, PHA. (1986). Regular, nonsporing gram positive rods. In: Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G. (Eds.), 1986. Bergey’s Manual of Systematic Bacteriology, vol. 2. Williams and Wilkins, Baltimore, pp. 1208e1260.
  • Tajabadi, N., Makhdzir, M., Nazamid, S., Shuhaimi, M., Rasoul, B., Abdul, MMY. (2013). Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee. Brazilian Journal of Microbiology, 44 (3): 717-722.
  • Tanada, Y., Kaya, HK. (1993). Insect Pathology, Academic Press, New York.
  • Thiery, I., Frachon, E. (1997). Identification, isolation, culture and preservation of entomopathogenic bacteria. In: Lacey, A.L. (Ed.), Manual of Techniques in Insect Pathology. Academic Press, London, pp. 55e73.
  • William, GW., Susan, MB., Dale, AP., David, JL. (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697e703.
  • Wilson-Rich, N., Dres, ST., Starks, PT. (2008). The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). J Insect Physiol. 54 (10-11): 392– 1399. doi: 10.1016/j.jinsphys.2008.07.016.
  • Yarılgaç, EŞ. (2016). Ordu Yöresi Bal Arılarının (Apis Mellifera l.) Bakteriyal Florası (Master's thesis, Ordu Üniversitesi Fen Bilimleri Enstitüsü).

DETERMINATION OF HONEY BEE (Apis mellifera) BACTERIAL FLORA, CRY GENE ANALYSIS AND HONEY BEE HEALTH

Year 2021, Volume: 21 Issue: 2, 157 - 167, 11.11.2021
https://doi.org/10.31467/uluaricilik.954479

Abstract

Beekeeping provides important contributions to the agricultural economy and crop production through pollination both in Turkey and the world. It is evaluated that without bees, the plant production can decrease by 47%. Many factors affect honey production negatively. Among these reasons, besides diseases caused by microorganisms, diseases and dangers originating from organisms are at the forefront. Today, many methods are used in the control these pests and yet they are still unavoidable. Among these methods, the biological control method is not used commonly. The aim of the study is to create a basis for the development of biopesticides to control bee diseases. In this context, as a result of the study, 16 bacteria were isolated from honey bees. While, 12 bacteria belonging to the genus Bacillus, two bacteria belonging to the genus Lysinibacillus, one bacterium belonging to the genus Paenibacillus and one bacterium belonging to the genus Pantoea were obtained. Molecular and biochemical identifications of these bacteria were done and registered in GenBank and their accession numbers were obtained. cry gene analyzes of 15 bacteria belonging to the genus Bacillus were performed. As it is known, cry genes have the potential to be used against pests. In the future, these bacteria and their genes will have the potential to be used as biopesticides. According to these results, the cry1 gene was observed in 8 bacteria and the cry3 gene was observed in 3 bacteria. cry2 and cry4 genes could not be detected in these bacteria. Bacteria that including cry genes are of great importance for honey bee health. Bacteria have the potential to be developed as internal biopesticides and used against different bee diseases to improve honey bee health.

Project Number

21HZP00159

References

  • Altschul, SF., Gish, W., Miller, W., Myers, EW., Lipman, DJ. (1990). Basic local alignment search tool. J Mol Biol. Oct 5;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2. PMID: 2231712.
  • Aronson, AI. (1993). Two Faces of Bacillus thuringiensis Insecticidal Proteins and Post-Exponential Survival, Mol. Microbiol., 7, 489–496.
  • Barganska, Z., Slebioda M., Namiesnik, J. (2011). Determination of antibiotic residues in honey. Trends in Analytical Chemistry, 30 (7): 1035–1041.
  • Beegle, CC., Yamamoto, T. (1992). History of Bacillus thuringiensis Berliner Research and Development, Can. Entomol., 124, 587-616.
  • Beno, SM., Cheng, RA., Orsi, RH., Duncan, DR., Guo, X., Kovac, J., Carroll, LM., Martin, NH., Wiedmann, M. (2020). Paenibacillus odorifer, the Predominant Paenibacillus Species Isolated from Milk in the United States, Demonstrates Genetic and Phenotypic Conservation of Psychrotolerance but Clade-Associated Differences in Nitrogen Metabolic Pathways. mSphere. 22;5(1):e00739-19. doi: 10.1128/mSphere.00739-19. PMID: 31969477; PMCID: PMC7407005.
  • Ben-Dov, E., Boussiba, S., Zaritsky, A., (1995). Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 177, 2581e2587.
  • Brutscher, LM., Daughenbaugh, KF., Flenniken, ML. (2015). Antiviral defense mechanisms in honey bees. Curr Opin Insect Sci.10:71–82., doi: 10.1016/j.cois.2015.04.016.
  • Charles, JF., Nielsen-Leroux, C., Delecluse, C. (1996). Bacillus sphaericus Toxins: Molecular Biology and Mode of Action, Ann. Rev. Entomol., 41, 451-472.
  • Cruz, AT., Cazacu, AC., Allen, CH. (2007). Pantoea agglomerans, a plant pathogen causing human disease. Journal of Clinical Microbiology, 45(6): 1989-1992.
  • DeGrandi-Hoffman, G., Chen, Y. (2015). Nutrition, immunity and viral infections in honey bees. Curr Opin Insect Sci. 10:170–176., doi: 10.1016/j.cois.2015.05.007.
  • Doğaroğlu, M., Samancı, T. (2006). Balda Yorelere Gore Kalıntı ile ve Orijin Tespit Projesi. Teknoloji ve Yenilik Destek Programları Başkanlığı (TEYDEB) Arıcılık Raporu, Ankara, Turkiye.
  • Evans, JD., Armstrong, TN. (2005). Inhibition of the American foulbrood bacterium, Paenibacillus larvae, by bacteria isolated from honey bees. J Apic. Res. 44: 168–171., doi: 10.1080/00218839.2005.11101173.
  • Evans, JD., Aronstein, K., Chen, YP., Hetru, C., Imler, JL., Jiang, H., Kanost, M., Thompson, GJ., Zou, Z., Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15 (5): 645–656., doi: 10.1111/j.1365- 2583.2006.00682.x.
  • Evans, JD., Spivak, M. (2010). Socialized medicine: Individual and communal disease barriers in honey bees. J Invertebr Pathol. 103 (Supplement): S62–S72., doi: 10.1016/j.jip.2009.06.019.
  • Feitelson, JS. (1993). The Bacillus thuringiensis Family Tree, In “Advanced Engineered Pesticides”, (Kim, L., Ed.), Marcel Dekker. Inc., New York, 63-71.
  • Feitelson, JS., Payne, J., Kim, L. (1992). Bacillus thuringiensis: Insect and Beyond, Bio/Technology, 10, 271-275.
  • Forsgren, E., Olofsson, T. C., Vasquez A., Fries, I., (2010). Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie, 41: 99–108.
  • Gilliam, M. (1997). Identification and roles of nonpathogenic microflora associated with honey bees. FEMS Microbiol Lett. 155:1–10., doi: 10.1111/j.1574-6968.1997.tb12678.x.
  • Höfte, H., Whiteley HR. (1989). Insecticidal Crystal Proteins of Bacillus thuringiensis, Microbiol. Rev., 53, 242-255.
  • Ilyasov, RA., Gaifullina, LR., Saltykova, ES., Poskryakov, AV., Nikolenko, AG. (2012). Review of the expression of antimicrobial peptide defensin in honey bees Apis mellifera L. Journal of Apicultural Science 56 (1), 115-124. doi: 10.2478/v10289-012-0013-y.
  • Ilyasov, R., Lim, S., Lee, ML., Kwon, HW., Nikolenko, A. (2021). Effect of miticides amitraz and fluvalinate on reproduction and productivity of honey bee Apis mellifera. Uludag Bee Journal (Uludağ Arıcılık Dergisi) 21 (1), 21-30. doi: 10.31467/uluaricilik.883775.
  • Ishiawata, S. (1901). On a Kind of Severe Flacherie (sotto disease), Dainihon Sanshi Kaiho, 114, 1-5.
  • Klein, MG., Jackson, TA. (1992). Bacterial Diseases of Scarabs, In “Use of Pathogens in Scarab Pest Management” (T.A. Jackson, T. A. ve Glare, T. R., Eds.), 43-61, Intercept, Andover.
  • Klein, MG., Kaya HK. (1995). Bacillus and Serretia Species for Scarab control, Mem. Inst. Oswaldo Cruz, 90, 87-95.
  • Knowles, BH. (1994). Mechanism of Action of Bacillus thuringiensis Insecticidal -endotoxin, In Advances in Insect Physiology, Volume 24. Evans, P.D. (ed.), pp. 275-308. Academic Press, London.
  • Kurşun, Ö., Ünal, N., Cesur, S., Altın, N., Canbakan, B., Argun, C., Koldaş, K., Şencan, İ. (2012). Pantoea agglomerans’a Bağlı Ventilatörle İlişkili Pnömoni Gelişen Bir Olgu. Mikrobiyoloji Bülteni, 46(2):295-298 Olgu Sunumu.
  • Lacey, LA., Frutos, R., Kaya, HK., Vail, P. (2001). Insect Pathogens as Biological Control Agents: Do They Have a Future?, Biol. Control, 21, 230-248.
  • Lacey, LA., Undeen, AH. (1986). Microbial Control of Black Flies and Mosquitoes, Ann. Rev. Entomol., 31, 265-296.
  • Larsen, A., Reynaldi, JF., Guzmán-Novoa, E. (2019). Fundaments of the honey bee (Apis mellifera) immune system. Review. Rev Mex Cienc Pecu 10(3):705-728., doi: 10.22319/rmcp.v10i3.4785.
  • Li, G., Zhao, H., Liu, Z., Wang, H., Xu, B., Guo, X. (2018). The Wisdom of Honeybee Defenses Against Environmental Stresses. Front Microbiol. 9 (722): 1-15., doi: 10.3389/fmicb.2018.00722.
  • Mutinelli, F. (2003). Practical application of antibacterial drugs for the control of honey bee diseases. Apiacta, 38: 149-155.
  • Nicolas, L., Regis, LN., Rios, E. M. (1994). Role of The Exosporium in The Stability of The Bacillus sphaericus Binary Toxin, FEMS Microbiol. Lett., 124, 271-276.
  • Nielsen-Leroux, C., Pasquier, F., Charles, JF., Sinegre, G., Gaven, B., Pasteur, N. (1997). Resistance to Bacillus sphaericus Involves Different Mechanism in Culex pipiens (Diptera: Culicidae) Larvae, J. Med. Entomol., 34, 321-327.
  • Olofsson, TC., Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol. 57(4):356-363., doi:10.1007/s00284-008- 9202-0.
  • Rao, DR., Mani, TR., Rajendran, R., Joseph, AS., Gajanana, A., Reuben, R. (1995). Development of a High Level of Resistance to Bacillus sphaericus in a Field Population of Culex quinquefasciatus from Kochi, India, J. Am. Mosq. Control Assoc., 11, 1-5.
  • Reynaldi, FJ., De Giusti, MR., Alippi, AM. (2004). Inhibition of the growth of Ascosphaera apis by Bacillus and Paenibacillus strains isolated from honey. Rev Argent Microbiol. 36(1):52- 55.
  • Sambrook, J., Fritsch, EF., Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
  • Schmid, MR., Brockmann, A., Pirk, CW., Stanley, DW., Tautz, J. (2008). Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J Insect Physiol.54(2):439-444., doi:10.1016/j.jinsphys.2007.11.002.
  • Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, DR., Deon, DH. (1998). Bacillus thuringiensis and its Pesticidal Proteins, Microbiol. Mol. Biol. Rev., 62, 775-806.
  • Seigel, JP. (2001). The Mammalian Safety of Bacillus thuringiensis-Based Insecticides, J. Invertebr. Pathol., 77, 13-21.
  • Sneath, PHA. (1986). Regular, nonsporing gram positive rods. In: Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G. (Eds.), 1986. Bergey’s Manual of Systematic Bacteriology, vol. 2. Williams and Wilkins, Baltimore, pp. 1208e1260.
  • Tajabadi, N., Makhdzir, M., Nazamid, S., Shuhaimi, M., Rasoul, B., Abdul, MMY. (2013). Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee. Brazilian Journal of Microbiology, 44 (3): 717-722.
  • Tanada, Y., Kaya, HK. (1993). Insect Pathology, Academic Press, New York.
  • Thiery, I., Frachon, E. (1997). Identification, isolation, culture and preservation of entomopathogenic bacteria. In: Lacey, A.L. (Ed.), Manual of Techniques in Insect Pathology. Academic Press, London, pp. 55e73.
  • William, GW., Susan, MB., Dale, AP., David, JL. (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697e703.
  • Wilson-Rich, N., Dres, ST., Starks, PT. (2008). The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). J Insect Physiol. 54 (10-11): 392– 1399. doi: 10.1016/j.jinsphys.2008.07.016.
  • Yarılgaç, EŞ. (2016). Ordu Yöresi Bal Arılarının (Apis Mellifera l.) Bakteriyal Florası (Master's thesis, Ordu Üniversitesi Fen Bilimleri Enstitüsü).
There are 47 citations in total.

Details

Primary Language English
Subjects Ecology
Journal Section Research Articles
Authors

Mehtap Usta 0000-0001-7656-5655

Project Number 21HZP00159
Publication Date November 11, 2021
Acceptance Date September 6, 2021
Published in Issue Year 2021 Volume: 21 Issue: 2

Cite

Vancouver Usta M. DETERMINATION OF HONEY BEE (Apis mellifera) BACTERIAL FLORA, CRY GENE ANALYSIS AND HONEY BEE HEALTH. U. Arı. D.-U. Bee J. 2021;21(2):157-6.

Important Note: Since the author-referee information is kept confidential on both sides in our journal, both the author and the referees must upload the document to the system after removing their personal information in the review document section.

Note: Authors can also use homepage of our Journal.

https://creativecommons.org/licenses/by-nc-nd/4.0/

download
 

This work is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International.