Research Article
BibTex RIS Cite

Yeşil Sentez ile Propolis Temelli Gümüş Nanopartikül Sentezlenmesi ve Biyokimyasal Karakterizasyonu

Year 2022, Volume: 22 Issue: 1, 59 - 67, 19.05.2022
https://doi.org/10.31467/uluaricilik.1080096

Abstract

Propolis; bal arılarının kovanlarını farklı tehditlere karşı savunmak amacıyla bitkilerin farklı kısımlarından topladıkları ve kovanlarında depoladıkları bir maddedir. Propolis, bitkisel mumlar, esterler, yağ asitleri, uçucu bileşenler ve fenolik bileşiklerce zengin bir üründür. Zengin fenolik içeriği propolisi potansiyel bir indirgen kılmaktadır. Yapılan bu çalışmada propolis temelli gümüş nanopartiküller yeşil sentez tekniği kullanılarak elde edildi. Elde edilen gümüş nanopartiküllerin 425 nm’de maksimum absorbansa sahip olduğu ve boyutlarının 67 ile 75 nm arasında değiştiği tespit edildi. Propolis ekstraktı FT-IR verileri incelendiğinde 3200 cm-1'deki bant fonksiyonel -OH gruplarını temsil eder. 2919-2850 cm-1'deki bant CH gerilmesinden, 1634 cm-1'deki bant C=C, C=O veya NH gerilmesinden, 1508 cm-1’deki bant aromatik C=C gerilmesinden ve 1451 cm-1 'deki bant CH3, CH2, flavonoidler ve aromatik halkaların CH gerilmesinden kaynaklanır. Propolis ekstraktı ve gümüş nanopartiküllerin toplam fenolik madde miktarları sırasıyla 176,42±0,18 ve 122,63±0,23 mg GAE/mL olarak belirlenmiştir. P-AgNPs’lerin α-amilaz ve α-glukozidaz enzimleri IC50 değerleri sırasıyla 47,08 ± 0,002 ve 52,18 ± 0,001 µg/mL olarak tespit edildi. α-Amilaz ve α-glukozidaz inhibisyonu diyabet tedavisinde hala geçerli bir yaklaşımdır. Elde edilen nanopartiküllerin ilgili enzimler üzerine yüksek inhibisyon etkisi diyabet tedavisi potansiyelleri olduğunu göstermektedir. Ayrıca bu çalışmanın, propolis kullanılarak ucuz ve bol miktarda nanopartikül elde edilebildiğini göstermesi, apiterapi uygulamalarında kullanılabilecek nanopartikül içeren yeni ürünlerin geliştirilmesine de katkı sunacağı söylenebilir.

References

  • Al-Fakeh, MS., Gassoumi, M., Rabhi, M., Othman, S., Omer, M. (2021). Biosynthesis and characterization of Saudi propolis-mediated silver nanoparticles and their biological properties. Open Physics, 19(1), 753-757. doi.org/10.1515/phys-2021-0091.
  • Al-Yousef, HM., Amina, M., Alqahtani, AS., Alqahtani, MS., Malik, A., Hatshan, MR., Syed, R. (2020). Pollen bee aqueous extract-based synthesis of silver nanoparticles and evaluation of their anti-cancer and anti-bacterial activities. Processes, 8(5), 524. doi.org/10.3390/pr8050524.
  • Ali, ZA., Yahya, R., Sekaran, SD., Puteh, R. (2016). Green synthesis of silver nanoparticles using apple extract and its antibacterial properties, Advances in Materials Science and Engineering, 1-6. doi.org/10.1155/2016/4102196.
  • Bernfeld, P. (1955). Amylases, alpha and beta, Methods in enzymology.,149-158.
  • Beykaya, M., Çağlar, A. (2016). Bitkisel özütler kullanılarak gümüş-nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(3), 631-641. doi.org/ 10.5578/fmbd.34220
  • Corciova, A., Mircea, C., Burlec, AF., Cioanca, O., Tuchilus, C., Fifere, A., Hancianu, M. (2019). Antioxidant, antimicrobial and photocatalytic activities of silver nanoparticles obtained by bee propolis extract assisted biosynthesis. Farmacia, 67(3), 482-489. doi.org/10.31925/farmacia.2019.3.16.
  • Debnath, G., Das, P., Saha, AK. (2019). Green synthesis of silver nanoparticles using mushroom extract of Pleurotus giganteus: characterization, antimicrobial, and α-amylase inhibitory activity. Bionanoscience, 9(3), 611-619. doi.org/10.1007/s12668-019-00650-y.
  • Gholamhoseinian, A., Fallah H, Sharifi-far, F., Mirtajaddini, M. (2008). The inhibitory effect of some Iranian plants extracts on the alpha glucosidase, Iranian Journal of Basic Medical Sciences, 11(1), 1-9.
  • Johnson, P., Krishnan, V., Loganathan, C., Govindhan, K., Raji, V., Sakayanathan, P., Palvannan, T. (2018). Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: an effective antioxidant scavenger and α-amylase inhibitor. Artificial Cells, Nanomedicine, and Biotechnology, 46(7), 1488-1494. doi.org/10.1080/21691401.2017.1374283.
  • Keskin, M. (2022). Synthesis, Characterization and antidiabetic potential of bee pollen based silver nanoparticles. El-Cezeri, 9(1), 266-275. doi.org/10.31202/ecjse.963670.
  • Keskin, M., Kolaylı, S. (2018). Standardization of propolis, Is it possible. Uludag Bee J, 18(2), 101-110. doi.org/10.31467/uluaricilik.485080.
  • Mohammadi, F., Yousefi, M., Ghahremanzadeh, R. (2019). Green synthesis, characterization antimicrobial activity of silver nanoparticles (agnps) using leaves and stems extract of some plants, Advanced Journal of Chemistry-Section A, 2 (4), 266–275. doi.org/10.33945/SAMI/AJCA.2019.4.1.
  • Özkök, A., Keskin, M., Samancı, AE T., Önder, EY., Takma, Ç. (2021). Determination of antioxidant activity and phenolic compounds for basic standardization of Turkish propolis. Applied Biological Chemistry, 64(1), 1-10. doi.org/10.1186/s13765-021-00608-3.
  • Priyadarshini, JF., Sivakumari, K., Selvaraj, R., Ashok, K., Jayaprakash, P., Rajesh, S. (2018). Green synthesis of silver nanoparticles from propolis. Res J Life Sci Bioinform Pharm Chem Sci, 4, 23-36. doi.org/ 10.26479/2018.0404.02.
  • Rai, MK., Yadav, AP., Gade, AK. (2009). Silver nanoparticles as a new generation of antimicrobials, Biotech Adv., 27 (1), 76-82. doi.org/10.1016/j.biotechadv.2008.09.002.
  • Ramkumar, KM., Thayumanavan, B., Palvannan, T., Rajaguru, P. (2010). Inhibitory effect of Gymnema Montanum leaves on α-glucosidase activity and α-amylase activity and their relationship with polyphenolic content. Medicinal Chemistry Research, 19(8), 948-961. doi.org/10.1007/s00044-009-9241-5.
  • Senthilkumar, P., Santhosh Kumar, DS., Sudhagar, B., Vanthana, M., Parveen, MH., Sarathkumar, S., Kannan, C. (2016). Seagrass-mediated silver nanoparticles synthesis by Enhalus acoroides and its α-glucosidase inhibitory activity from the Gulf of Mannar. Journal of Nanostructure in Chemistry, 6(3), 275-280. doi.org/10.1007/s40097-016-0200-7.
  • Singleton, VL, Orthofer, R., Lamuela-Raventos, RM. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in enzymology, 299, 152–178. doi.org/10.1016/S0076-6879(99)99017-1.
  • Singleton, VL., Rossi, JA. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents, American journal of Enology and Viticulture, 16(3), 144-158.
  • Yıldız, O. (2020). Tüketilebilir propolis ekstrelerinde kullanılan çözücülerin (menstrumlarin) değerlendirilmesi. Uludağ Arıcılık Dergisi, 20(1), 24-37. doi.org/10.31467/uluaricilik.659556.

GREEN SYNTHESIS AND BIOCHEMICAL PROPERTIES OF PROPOLIS BASED SILVER NANOPARTICLES

Year 2022, Volume: 22 Issue: 1, 59 - 67, 19.05.2022
https://doi.org/10.31467/uluaricilik.1080096

Abstract

Propolis is a substance collected by honey bees from different parts of plants. Honey bees store it in their hives in order to defend against different threats. Propolis is a bee-product rich in plant waxes, esters, fatty acids, volatile components and phenolic compounds. It`s rich phenolic content makes propolis a potential reducer for Ag+ to Ag. In this study, propolis-based silver nanoparticles were obtained using the green synthesis technique. It was determined that the obtained silver nanoparticles had a maximum absorbance at 425 nm and their sizes ranged from 67 to 75 nm. When the FT-IR data of propolis extract is examined, the band at 3200 cm-1 represents functional -OH groups, the band at 2919-2850 cm-1 represents C-H stretching, the band at 1634 cm-1 represents C=C, C=O or NH stretching, the band at 1508 cm-1 represents aromatic C=C stretching and the band at 1451 cm-1 originate from the C-H stretching of CH3, CH2, flavonoids and aromatic rings. Total phenolic content of propolis extract and silver nanoparticles was determined as 176.42±0.18 and 122.63±0.23 mg GAE/mL, respectively. IC50 value of P-AgNPs for α-amylase and α-glycosidase enzyme inhibition was defined as 47.08 ± 0.002 and 52.18 ± 0.001 µg/mL, respectively. Inhibition of α-Amylase and α-glycosidase is still a valid approach in the treatment of diabetes. The high inhibition effect of the obtained nanoparticles on the related enzymes shows that they have diabetes treatment potential. In addition, showing that cheap and abundant nanoparticles can be obtained by using propolis, this study may contribute to the development of new products containing nanoparticles that can be used in apitherapy applications.

References

  • Al-Fakeh, MS., Gassoumi, M., Rabhi, M., Othman, S., Omer, M. (2021). Biosynthesis and characterization of Saudi propolis-mediated silver nanoparticles and their biological properties. Open Physics, 19(1), 753-757. doi.org/10.1515/phys-2021-0091.
  • Al-Yousef, HM., Amina, M., Alqahtani, AS., Alqahtani, MS., Malik, A., Hatshan, MR., Syed, R. (2020). Pollen bee aqueous extract-based synthesis of silver nanoparticles and evaluation of their anti-cancer and anti-bacterial activities. Processes, 8(5), 524. doi.org/10.3390/pr8050524.
  • Ali, ZA., Yahya, R., Sekaran, SD., Puteh, R. (2016). Green synthesis of silver nanoparticles using apple extract and its antibacterial properties, Advances in Materials Science and Engineering, 1-6. doi.org/10.1155/2016/4102196.
  • Bernfeld, P. (1955). Amylases, alpha and beta, Methods in enzymology.,149-158.
  • Beykaya, M., Çağlar, A. (2016). Bitkisel özütler kullanılarak gümüş-nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(3), 631-641. doi.org/ 10.5578/fmbd.34220
  • Corciova, A., Mircea, C., Burlec, AF., Cioanca, O., Tuchilus, C., Fifere, A., Hancianu, M. (2019). Antioxidant, antimicrobial and photocatalytic activities of silver nanoparticles obtained by bee propolis extract assisted biosynthesis. Farmacia, 67(3), 482-489. doi.org/10.31925/farmacia.2019.3.16.
  • Debnath, G., Das, P., Saha, AK. (2019). Green synthesis of silver nanoparticles using mushroom extract of Pleurotus giganteus: characterization, antimicrobial, and α-amylase inhibitory activity. Bionanoscience, 9(3), 611-619. doi.org/10.1007/s12668-019-00650-y.
  • Gholamhoseinian, A., Fallah H, Sharifi-far, F., Mirtajaddini, M. (2008). The inhibitory effect of some Iranian plants extracts on the alpha glucosidase, Iranian Journal of Basic Medical Sciences, 11(1), 1-9.
  • Johnson, P., Krishnan, V., Loganathan, C., Govindhan, K., Raji, V., Sakayanathan, P., Palvannan, T. (2018). Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: an effective antioxidant scavenger and α-amylase inhibitor. Artificial Cells, Nanomedicine, and Biotechnology, 46(7), 1488-1494. doi.org/10.1080/21691401.2017.1374283.
  • Keskin, M. (2022). Synthesis, Characterization and antidiabetic potential of bee pollen based silver nanoparticles. El-Cezeri, 9(1), 266-275. doi.org/10.31202/ecjse.963670.
  • Keskin, M., Kolaylı, S. (2018). Standardization of propolis, Is it possible. Uludag Bee J, 18(2), 101-110. doi.org/10.31467/uluaricilik.485080.
  • Mohammadi, F., Yousefi, M., Ghahremanzadeh, R. (2019). Green synthesis, characterization antimicrobial activity of silver nanoparticles (agnps) using leaves and stems extract of some plants, Advanced Journal of Chemistry-Section A, 2 (4), 266–275. doi.org/10.33945/SAMI/AJCA.2019.4.1.
  • Özkök, A., Keskin, M., Samancı, AE T., Önder, EY., Takma, Ç. (2021). Determination of antioxidant activity and phenolic compounds for basic standardization of Turkish propolis. Applied Biological Chemistry, 64(1), 1-10. doi.org/10.1186/s13765-021-00608-3.
  • Priyadarshini, JF., Sivakumari, K., Selvaraj, R., Ashok, K., Jayaprakash, P., Rajesh, S. (2018). Green synthesis of silver nanoparticles from propolis. Res J Life Sci Bioinform Pharm Chem Sci, 4, 23-36. doi.org/ 10.26479/2018.0404.02.
  • Rai, MK., Yadav, AP., Gade, AK. (2009). Silver nanoparticles as a new generation of antimicrobials, Biotech Adv., 27 (1), 76-82. doi.org/10.1016/j.biotechadv.2008.09.002.
  • Ramkumar, KM., Thayumanavan, B., Palvannan, T., Rajaguru, P. (2010). Inhibitory effect of Gymnema Montanum leaves on α-glucosidase activity and α-amylase activity and their relationship with polyphenolic content. Medicinal Chemistry Research, 19(8), 948-961. doi.org/10.1007/s00044-009-9241-5.
  • Senthilkumar, P., Santhosh Kumar, DS., Sudhagar, B., Vanthana, M., Parveen, MH., Sarathkumar, S., Kannan, C. (2016). Seagrass-mediated silver nanoparticles synthesis by Enhalus acoroides and its α-glucosidase inhibitory activity from the Gulf of Mannar. Journal of Nanostructure in Chemistry, 6(3), 275-280. doi.org/10.1007/s40097-016-0200-7.
  • Singleton, VL, Orthofer, R., Lamuela-Raventos, RM. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in enzymology, 299, 152–178. doi.org/10.1016/S0076-6879(99)99017-1.
  • Singleton, VL., Rossi, JA. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents, American journal of Enology and Viticulture, 16(3), 144-158.
  • Yıldız, O. (2020). Tüketilebilir propolis ekstrelerinde kullanılan çözücülerin (menstrumlarin) değerlendirilmesi. Uludağ Arıcılık Dergisi, 20(1), 24-37. doi.org/10.31467/uluaricilik.659556.
There are 20 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Merve Keskin 0000-0001-9365-334X

Gulsen Kaya 0000-0003-2537-8117

Şaban Keskin 0000-0002-0287-4268

Publication Date May 19, 2022
Acceptance Date March 25, 2022
Published in Issue Year 2022 Volume: 22 Issue: 1

Cite

Vancouver Keskin M, Kaya G, Keskin Ş. GREEN SYNTHESIS AND BIOCHEMICAL PROPERTIES OF PROPOLIS BASED SILVER NANOPARTICLES. U. Arı. D.-U. Bee J. 2022;22(1):59-67.

Important Note: Since the author-referee information is kept confidential on both sides in our journal, both the author and the referees must upload the document to the system after removing their personal information in the review document section.

Note: Authors can also use homepage of our Journal.

https://creativecommons.org/licenses/by-nc-nd/4.0/

download
 

This work is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International.